Browsing by Author "Zhu, Hongmei"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Antagonists of the system L neutral amino acid transporter (LAT) promote endothelial adhesivity of human red blood cells.(Thrombosis and haemostasis, 2017-06) Dosier, Laura Beth Mann; Premkumar, Vikram J; Zhu, Hongmei; Akosman, Izzet; Wempe, Michael F; McMahon, Timothy JThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.Item Open Access Endothelial LAT1 (SLC7A5) Mediates S-Nitrosothiol Import and Modulates Respiratory Sequelae of Red Blood Cell Transfusion In Vivo.(Thrombosis and haemostasis, 2024-03) Zhu, Hongmei; Auten, Richard L; Whorton, Augustus Richard; Mason, Stanley Nicholas; Bock, Cheryl B; Kucera, Gary T; Kelleher, Zachary T; Vose, Aaron T; McMahon, Tim JBackground
Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin. RBCs export these vasoregulatory SNOs on demand, thereby regulating regional blood flow and preventing RBC-EC adhesion, and the large (system L) neutral amino acid transporter 1 (LAT1; SLC7A5) appears to mediate SNO export by RBCs.Methods
To determine the role of LAT1-mediated SNO import by ECs generally and of LAT1-mediated SNO import by ECs in RBC SNO-dependent modulation of RBC sequestration and blood oxygenation in vivo, we engineered LAT1fl/fl; Cdh5-Cre+ mice, in which the putative SNO transporter LAT1 can be inducibly depleted (knocked down, KD) specifically in ECs ("LAT1ECKD").Results
We show that LAT1 in mouse lung ECs mediates cellular SNO uptake. ECs from LAT1ECKD mice (tamoxifen-induced LAT1fl/fl; Cdh5-Cre+) import SNOs poorly ex vivo compared with ECs from wild-type (tamoxifen-treated LAT1fl/fl; Cdh5-Cre-) mice. In vivo, endothelial depletion of LAT1 increased RBC sequestration in the lung and decreased blood oxygenation after RBC transfusion.Conclusion
This is the first study showing a role for SNO transport by LAT1 in ECs in a genetic mouse model. We provide the first direct evidence for the coordination of RBC SNO export with EC SNO import via LAT1. SNO flux via LAT1 modulates RBC-EC sequestration in lungs after transfusion, and its disruption impairs blood oxygenation by the lung.Item Open Access Nitric oxide loading reduces sickle red cell adhesion and vaso-occlusion in vivo.(Blood advances, 2019-09) McMahon, Timothy J; Shan, Siqing; Riccio, Daniel A; Batchvarova, Milena; Zhu, Hongmei; Telen, Marilyn J; Zennadi, RahimaSickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as S-nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro, and vessel obstruction in vivo. Because transfusion is frequently used in SCD, we also determined the effects of banked (SNO-depleted) red blood cells (RBCs) on vaso-occlusion in vivo. Fresh or 14-day-old normal RBCs (AARBCs) reduced epinephrine-activated SSRBC adhesion to the vascular endothelium and prevented vaso-occlusion. In contrast, AARBCs stored for 30 days failed to decrease activated SSRBC adhesivity or vaso-occlusion, unless these RBCs were loaded with NO. Furthermore, NO loading of SSRBCs increased S-nitrosohemoglobin and modulated epinephrine's effect by upregulating phosphorylation of membrane proteins, including pyruvate kinase, E3 ubiquitin ligase, and the cytoskeletal protein 4.1. Thus, abnormal SSRBC NO/SNO content both contributes to the vaso-occlusive pathophysiology of SCD, potentially by affecting at least protein phosphorylation, and is potentially amenable to correction by (S)NO repletion or by RBC transfusion.Item Open Access Pannexin 1 Channels Control the Hemodynamic Response to Hypoxia by Regulating O2-Sensitive Extracellular ATP in Blood.(American journal of physiology. Heart and circulatory physiology, 2021-01-15) Kirby, Brett S; Sparks, Matthew A; Lazarowski, Eduardo R; Lopez Domowicz, Denise A; Zhu, Hongmei; McMahon, Timothy JPannexin1 (Panx1) channels export ATP and may contribute to increased concentration of the vasodilator ATP in plasma during hypoxia in vivo. We hypothesized that Panx1 channels and associated ATP export contributes to hypoxic vasodilation, a mechanism that facilitates the matching of oxygen delivery to tissue metabolic demand. Male and female mice devoid of Panx1 (Panx1-/-) and wild-type controls (WT) were anesthetized, mechanically ventilated, and instrumented with a carotid artery catheter or femoral artery flow transducer for hemodynamic and plasma ATP monitoring during inhalation of 21% (normoxia) or 10% oxygen (hypoxia). ATP export from WT vs. Panx1-/- erythrocytes (RBC) was determined ex vivo via tonometer experimentation across progressive deoxygenation. Mean arterial pressure (MAP) was similar in Panx1-/- (N=6) and WT (N=6) mice in normoxia, but the decrease in MAP in hypoxia seen in WT was attenuated in Panx1-/- mice (-16±9% vs -2±8%; P<0.05). Hindlimb blood flow (HBF) was significantly lower in Panx1-/- (N=6) vs. WT (N=6) basally, and increased in WT but not Panx1-/- mice during hypoxia (8±6% vs -10±13%; P<0.05). Estimation of hindlimb vascular conductance using data from the MAP and HBF experiments showed an average response of 28% for WT vs -9% for Panx1-/- mice. Mean venous plasma ATP during hypoxia was 57% lower in Panx1-/- (N=6) vs WT mice (N=6) (P<0.05). Mean hypoxia-induced ATP export from RBCs from Panx1-/- mice (N=8) was 82% lower than from WT (N=8) ( P<0.05). Panx1 channels participate in hemodynamic responses consistent with hypoxic vasodilation by regulating hypoxia-sensitive extracellular ATP levels in blood.Item Open Access Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes.(PloS one, 2018-01) Rogers, Stephen C; Dosier, Laura B; McMahon, Timothy J; Zhu, Hongmei; Timm, David; Zhang, Hengtao; Herbert, Joseph; Atallah, Jacqueline; Palmer, Gregory M; Cook, Asa; Ernst, Melanie; Prakash, Jaya; Terng, Mark; Towfighi, Parhom; Doctor, Reid; Said, Ahmed; Joens, Matthew S; Fitzpatrick, James AJ; Hanna, Gabi; Lin, Xue; Reisz, Julie A; Nemkov, Travis; D'Alessandro, Angelo; Doctor, AllanIntact red blood cells (RBCs) are required for phenotypic analyses. In order to allow separation (time and location) between subject encounter and sample analysis, we developed a research-specific RBC cryopreservation protocol and assessed its impact on data fidelity for key biochemical and physiological assays. RBCs drawn from healthy volunteers were aliquotted for immediate analysis or following glycerol-based cryopreservation, thawing, and deglycerolization. RBC phenotype was assessed by (1) scanning electron microscopy (SEM) imaging and standard morphometric RBC indices, (2) osmotic fragility, (3) deformability, (4) endothelial adhesion, (5) oxygen (O2) affinity, (6) ability to regulate hypoxic vasodilation, (7) nitric oxide (NO) content, (8) metabolomic phenotyping (at steady state, tracing with [1,2,3-13C3]glucose ± oxidative challenge with superoxide thermal source; SOTS-1), as well as in vivo quantification (following human to mouse RBC xenotransfusion) of (9) blood oxygenation content mapping and flow dynamics (velocity and adhesion). Our revised glycerolization protocol (40% v/v final) resulted in >98.5% RBC recovery following freezing (-80°C) and thawing (37°C), with no difference compared to the standard reported method (40% w/v final). Full deglycerolization (>99.9% glycerol removal) of 40% v/v final samples resulted in total cumulative lysis of ~8%, compared to ~12-15% with the standard method. The post cryopreservation/deglycerolization RBC phenotype was indistinguishable from that for fresh RBCs with regard to physical RBC parameters (morphology, volume, and density), osmotic fragility, deformability, endothelial adhesivity, O2 affinity, vasoregulation, metabolomics, and flow dynamics. These results indicate that RBC cryopreservation/deglycerolization in 40% v/v glycerol final does not significantly impact RBC phenotype (compared to fresh cells).Item Open Access Treatment-related biomarkers in pulmonary hypertension patients on oral therapies.(Respiratory research, 2020-11-19) Swaminathan, Aparna C; Zhu, Hongmei; Tapson, Victor; Lokhnygina, Yuliya; Poms, Abby; Kelleher, Zach; Gaspard, Elijah; Kennedy, Karla; Fee, Brian E; Fortin, Terry; Mason, S Nicholas; Parikh, Kishan; McMahon, Tim JBackground
Multiple classes of oral therapy are available for the treatment of pulmonary arterial hypertension (PAH), but there is little to guide clinicians in choosing a specific regimen or therapeutic class. We aimed to investigate whether treatment-relevant blood biomarkers can predict therapy response in prevalent PAH patients.Methods
This prospective cohort study longitudinally assessed biomarkers along the endothelin-1 (ET-1) and nitric oxide (cGMP, ADMA, SDMA, nitrite, and S-nitrosohemoglobin) pathways along with the cGMP/NT-proBNP ratio over 12 months in patients with WHO Group 1 PAH on oral PAH-specific therapies. The relationship between biomarkers and 6MWD at the same and future visits was examined using mixed linear regression models adjusted for age. As cGMP can be elevated when NT-proBNP is elevated, we also tested the relationship between 6MWD and the cGMP/NT-pro BNP ratio. Patients with PAH with concomitant heart or lung disease or chronic thromboembolic pulmonary hypertension (CTEPH) were included in a sensitivity analysis.Results
The study cohort included 58 patients with PAH treated with either an endothelin receptor antagonist (27.6%), phosphodiesterase-5 inhibitor (25.9%) or a combination of the two (43.1%). Among biomarkers along the current therapeutic pathways, ET-1 and the cGMP/NT-proBNP ratio associated with same visit 6MWD (p = 0.02 and p = 0.03 respectively), and ET-1 predicted future 6MWD (p = 0.02). ET-1 (p = 0.01) and cGMP/NT-proBNP ratio (p = 0.04) also predicted future 6MWD in the larger cohort (n = 108) of PAH patients with concomitant left heart disease (n = 17), lung disease (n = 20), or CTEPH (n = 13). Finally, in the larger cohort, SDMA associated with 6MWD at the same visit (p = 0.01) in all subgroups and ADMA associated with 6MWD in PAH patients with concomitant lung disease (p = 0.03) and PAH patients on ERA therapy (p = 0.01).Conclusions
ET-1, cGMP/NTproBNP ratio, and dimethylarginines ADMA and SDMA are mediators along pathways targeted by oral PAH therapies that associate with or predict 6MWD.