Browsing by Author "Zhu, Kai"
- Results Per Page
- Sort Options
Item Open Access Climate Change and Forest Biodiversity in the Eastern United States: Insights from Inventory Data(2014) Zhu, KaiEcologists have long been interested in the relationships between climate change and forest biodiversity. For centuries, the scientific problems remain understanding the patterns of climate variation, forest geographic distribution, and demographic dynamics. Besides scientific merits, these questions will also help forest managers and policy makers to anticipate how forests respond to global change. This dissertation tackles these problems by using statistical modeling on climate and forest inventory data in the eastern United States.
In Chapter 1, we ask the question on the observed tree range distributions in response to contemporary climate change in the eastern United States. Tree species are expected to track warming climate by shifting their ranges to higher latitudes or elevations, but current evidence of latitudinal range shifts for suites of species is largely indirect. In response to global warming, offspring of trees are predicted to have ranges extend beyond adults at leading edges and the opposite relationship at trailing edges. Large-scale forest inventory data provides an opportunity to compare present latitudes of seedlings and adult trees at their range limits. Using the USDA Forest Service's Forest Inventory and Analysis data, we directly compared seedling and tree 5th and 95th percentile latitudes for 92 species in 30 longitudinal bands for 43,334 plots across the eastern United States. We further compared these latitudes with 20th century temperature and precipitation change and functional traits, including seed size and seed spread rate. Results suggest that 58.7% of the tree species examined show the pattern expected for a population undergoing range contraction, rather than expansion, at both northern and southern boundaries. Fewer species show a pattern consistent with a northward shift (20.7%) and fewer still with a southward shift (16.3%). Only 4.3% are consistent with expansion at both range limits. When compared with the 20th century climate changes that have occurred at the range boundaries themselves, there is no consistent evidence that population spread is greatest in areas where climate has changed most; nor are patterns related to seed size or dispersal characteristics. The fact that the majority of seedling extreme latitudes are less than those for adult trees may emphasize the lack of evidence for climate-mediated migration, and should increase concerns for the risks posed by climate change.
In Chapter 2, we ask the question on tree abundance within geographic range responding to climate variation in the eastern United States. Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis (Chapter 1). To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.
In Chapter 3, we ask the question on the demographic dynamics of density dependence at the individual tree level in eastern US forests. Density dependence could maintain diversity in forests, but studies disagree on its importance. Part of the disagreement results from the fact that different studies evaluate different responses (per-seedling or per-adult survival or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most studies are conducted on a single site and thus are difficult to generalize. Using USDA Forest Service's Forest Inventory and Analysis data, we analyzed over a million seedling-to-sapling recruitment observations of 50 species for both per-tree (adult) and per-seedling recruitment rates, controlling for climate effects in eastern US forests. We focused on per-tree recruitment as it is most likely to promote diversity at the population level, and it is most likely to be identified in observational or experimental data. To understand the prevalence of density dependence, we quantified the proportion of species with significant positive or negative effects. To understand the strength of density dependence, we determined the magnitude of effects among conspecifics and heterospecifics, and how it changes with overall species abundance. We found that the majority of the 50 species have significant density dependence effects, mostly negative, on both per-tree and per-seedling recruitment. Per-tree recruitment is positively associated with conspecific seedlings, saplings, and heterospecific saplings, negatively associated with heterospecific seedlings, conspecific and heterospecific trees. Per-seedling recruitment is positively associated with conspecific and heterospecific saplings, but negatively associated with conspecific and heterospecific seedlings and trees. Furthermore, for both per-tree and per-seedling recruitment, density dependence effects are stronger for conspecific than heterospecific neighbors. However, the strength of these effects does not vary with species abundance. We conclude that density dependence is pervasive, especially for per-tree recruitment, and its strength among conspecifics and heterospecifics is consistent with the predictions of the Janzen-Connell hypothesis.
Item Open Access Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest(Biological Conservation, 2020-01-01) Lamperty, Therese; Zhu, Kai; Poulsen, John R; Dunham, Amy EHunting has reduced or eliminated large-bodied vertebrates in many areas across the tropics, contributing to the global process of defaunation. Elucidating the ecological consequences of hunting has important implications for managing ecosystems and for our understanding of community and ecosystem ecology. We present data collected through a combination of comparative and experimental approaches to assess how faunally-intact and heavily-hunted forests in Gabon differ in understory vegetation structure, macroinvertebrate fauna, ecological processes, and the relative importance of different taxa driving those processes. Our results show that hunted sites had denser understory vegetation and hosted approximately 170 times fewer termites compared to faunally-intact sites. While web-building spiders were positively associated with understory vegetation density, this effect did not translate to significantly higher abundances in heavily-hunted forests. Additionally, the overall rates of decomposition, insectivory, and seed predation/removal on the forest floor appeared robust to both defaunation and the associated increases in understory vegetation density. However, our exclosure experiments revealed that the contribution of invertebrates to decomposition was approximately 25% lower in hunted sites compared to faunally-intact sites. Results suggest potential resilience in this complex ecosystem such that microbial or other taxa not measured in this study may compensate for the reduced functional contribution of invertebrates to decomposition. However, while our results illustrate potential resilience, they also indicate that indirect effects following defaunation, such as increases in the density of understory vegetation, may alter invertebrate communities on the forest floor, with potential consequences for the mechanisms, and therefore the dynamics, driving critical ecosystem processes.Item Open Access Integral Projection Models: Simulation Studies and Sensitivity Analyses(2014) Zhu, KaiIntegral projection model (IPM) is an important tool to study population dynamics and demography in ecology. Traditional IPMs are handled first with a fitting stage at individual-level transitions, then with a projection stage at population-level distributions. Here we adopt a new IPM framework that coherently focusing on population-level size distributions using point pattern theory.
We conduct simulation studies and sensitivity analyses to explore the properties of this new IPM framework. Under certain settings of demographic functions and parameters, we conduct two simulation studies by deterministically projecting population dynamics and stochastically generating point patterns. Assuming stationarity at equilibrium state, we then derive analytical solutions for the sensitivity of stable stage size distribution to kernel demographic parameters. We implement the sensitivity analyses to the two simulation studies. Demography, population dynamics, prior vs. posterior parameters, and sensitivities are compared among parameter settings and simulations.
For two simulation studies, we find that parameter recovery is challenging except under tight priors, suggesting possible parameter identification problems. Issues could somewhat be resolved by sensitivity analyses, which identify parameters that are most sensitive to the stable stage size distributions. In summary, we find population-level only data may be limited to infer demography, and we will integrate both individual- and population-level data in the future.