Browsing by Author "Zyla, Trevin R"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Cell-cycle control of cell polarity in yeast.(The Journal of cell biology, 2019-01) Moran, Kyle D; Kang, Hui; Araujo, Ana V; Zyla, Trevin R; Saito, Koji; Tsygankov, Denis; Lew, Daniel JIn many cells, morphogenetic events are coordinated with the cell cycle by cyclin-dependent kinases (CDKs). For example, many mammalian cells display extended morphologies during interphase but round up into more spherical shapes during mitosis (high CDK activity) and constrict a furrow during cytokinesis (low CDK activity). In the budding yeast Saccharomyces cerevisiae, bud formation reproducibly initiates near the G1/S transition and requires activation of CDKs at a point called "start" in G1. Previous work suggested that CDKs acted by controlling the ability of cells to polarize Cdc42, a conserved Rho-family GTPase that regulates cell polarity and the actin cytoskeleton in many systems. However, we report that yeast daughter cells can polarize Cdc42 before CDK activation at start. This polarization operates via a positive feedback loop mediated by the Cdc42 effector Ste20. We further identify a major and novel locus of CDK action downstream of Cdc42 polarization, affecting the ability of several other Cdc42 effectors to localize to the polarity site.Item Open Access Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit(Current Biology, 2014) Kuo, Chun-Chen; Savage, Natasha S; Chen, Hsin; Wu, Chi-Fang; Zyla, Trevin R; Lew, Daniel JCell polarity is critical for the form and function of many cell types. During polarity establishment, cells define a cortical "front" that behaves differently from the rest of the cortex. The front accumulates high levels of the active form of a polarity-determining Rho-family GTPase (Cdc42, Rac, or Rop) that then orients cytoskeletal elements through various effectors to generate the polarized morphology appropriate to the particular cell type [1, 2]. GTPase accumulation is thought to involve positive feedback, such that active GTPase promotes further delivery and/or activation of more GTPase in its vicinity [3]. Recent studies suggest that once a front forms, the concentration of polarity factors at the front can increase and decrease periodically, first clustering the factors at the cortex and then dispersing them back to the cytoplasm [4-7]. Such oscillatory behavior implies the presence of negative feedback in the polarity circuit [8], but the mechanism of negative feedback was not known. Here we show that, in the budding yeast Saccharomyces cerevisiae, the catalytic activity of the Cdc42-directed GEF is inhibited by Cdc42-stimulated effector kinases, thus providing negative feedback. We further show that replacing the GEF with a phosphosite mutant GEF abolishes oscillations and leads to the accumulation of excess GTP-Cdc42 and other polarity factors at the front. These findings reveal a mechanism for negative feedback and suggest that the function of negative feedback via GEF inhibition is to buffer the level of Cdc42 at the polarity site. © 2014 Elsevier Ltd.Item Open Access Mating in wild yeast: delayed interest in sex after spore germination.(Molecular biology of the cell, 2018-12) McClure, Allison W; Jacobs, Katherine C; Zyla, Trevin R; Lew, Daniel JStudies of laboratory strains of Saccharomyces cerevisiae have uncovered signaling pathways involved in mating, including information-processing strategies to optimize decisions to mate or to bud. However, lab strains are heterothallic (unable to self-mate), while wild yeast are homothallic. And while mating of lab strains is studied using cycling haploid cells, mating of wild yeast is thought to involve germinating spores. Thus, it was unclear whether lab strategies would be appropriate in the wild. Here, we have investigated the behavior of several yeast strains derived from wild isolates. Following germination, these strains displayed large differences in their propensity to mate or to enter the cell cycle. The variable interest in sex following germination was correlated with differences in pheromone production, which were due to both cis- and trans-acting factors. Our findings suggest that yeast spores germinating in the wild may often enter the cell cycle and form microcolonies before engaging in mating.Item Open Access Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast.(Curr Biol, 2016-08-22) Woods, Benjamin; Lai, Helen; Wu, Chi-Fang; Zyla, Trevin R; Savage, Natasha S; Lew, Daniel JThe highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front. In Saccharomyces cerevisiae, the guanine nucleotide dissociation inhibitor (GDI) Rdi1 recycles Cdc42 through the cytoplasm. Loss of Rdi1 slowed but did not eliminate Cdc42 accumulation at the front, suggesting the existence of other recycling pathways. One proposed pathway involves actin-directed trafficking of vesicles carrying Cdc42 to the front. However, we found no role for F-actin in Cdc42 concentration, even in rdi1Δ cells. Instead, Cdc42 was still able to exchange between the membrane and cytoplasm in rdi1Δ cells, albeit at a reduced rate. Membrane-cytoplasm exchange of GDP-Cdc42 was faster than that of GTP-Cdc42, and computational modeling indicated that such exchange would suffice to promote polarization. We also uncovered a novel role for the Cdc42-directed GTPase-activating protein (GAP) Bem2 in Cdc42 polarization. Bem2 was known to act in series with Rdi1 to promote recycling of Cdc42, but we found that rdi1Δ bem2Δ mutants were synthetically lethal, suggesting that they also act in parallel. We suggest that GAP activity cooperates with the GDI to counteract the dissipative effect of a previously unappreciated pathway whereby GTP-Cdc42 escapes from the polarity site through the cytoplasm.Item Open Access Ratiometric GPCR signaling enables directional sensing in yeast.(PLoS biology, 2019-10-17) Henderson, Nicholas T; Pablo, Michael; Ghose, Debraj; Clark-Cotton, Manuella R; Zyla, Trevin R; Nolen, James; Elston, Timothy C; Lew, Daniel JAccurate detection of extracellular chemical gradients is essential for many cellular behaviors. Gradient sensing is challenging for small cells, which can experience little difference in ligand concentrations on the up-gradient and down-gradient sides of the cell. Nevertheless, the tiny cells of the yeast Saccharomyces cerevisiae reliably decode gradients of extracellular pheromones to find their mates. By imaging the behavior of polarity factors and pheromone receptors, we quantified the accuracy of initial polarization during mating encounters. We found that cells bias the orientation of initial polarity up-gradient, even though they have unevenly distributed receptors. Uneven receptor density means that the gradient of ligand-bound receptors does not accurately reflect the external pheromone gradient. Nevertheless, yeast cells appear to avoid being misled by responding to the fraction of occupied receptors rather than simply the concentration of ligand-bound receptors. Such ratiometric sensing also serves to amplify the gradient of active G protein. However, this process is quite error-prone, and initial errors are corrected during a subsequent indecisive phase in which polarity clusters exhibit erratic mobile behavior.