Browsing by Author "van Aarde, Rudi J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Data-driven discovery of the spatial scales of habitat choice by elephants.(PeerJ, 2014-01) Mashintonio, Andrew F; Pimm, Stuart L; Harris, Grant M; van Aarde, Rudi J; Russell, Gareth JSetting conservation goals and management objectives relies on understanding animal habitat preferences. Models that predict preferences combine location data from tracked animals with environmental information, usually at a spatial resolution determined by the available data. This resolution may be biologically irrelevant for the species in question. Individuals likely integrate environmental characteristics over varying distances when evaluating their surroundings; we call this the scale of selection. Even a single characteristic might be viewed differently at different scales; for example, a preference for sheltering under trees does not necessarily imply a fondness for continuous forest. Multi-scale preference is likely to be particularly evident for animals that occupy coarsely heterogeneous landscapes like savannahs. We designed a method to identify scales at which species respond to resources and used these scales to build preference models. We represented different scales of selection by locally averaging, or smoothing, the environmental data using kernels of increasing radii. First, we examined each environmental variable separately across a spectrum of selection scales and found peaks of fit. These 'candidate' scales then determined the environmental data layers entering a multivariable conditional logistic model. We used model selection via AIC to determine the important predictors out of this set. We demonstrate this method using savannah elephants (Loxodonta africana) inhabiting two parks in southern Africa. The multi-scale models were more parsimonious than models using environmental data at only the source resolution. Maps describing habitat preferences also improved when multiple scales were included, as elephants were more often in places predicted to have high neighborhood quality. We conclude that elephants select habitat based on environmental qualities at multiple scales. For them, and likely many other species, biologists should include multiple scales in models of habitat selection. Species environmental preferences and their geospatial projections will be more accurately represented, improving management decisions and conservation planning.Item Open Access Savanna elephant numbers are only a quarter of their expected values.(PloS one, 2017-01) Robson, Ashley S; Trimble, Morgan J; Purdon, Andrew; Young-Overton, Kim D; Pimm, Stuart L; van Aarde, Rudi JSavannas once constituted the range of many species that human encroachment has now reduced to a fraction of their former distribution. Many survive only in protected areas. Poaching reduces the savanna elephant, even where protected, likely to the detriment of savanna ecosystems. While resources go into estimating elephant populations, an ecological benchmark by which to assess counts is lacking. Knowing how many elephants there are and how many poachers kill is important, but on their own, such data lack context. We collated savanna elephant count data from 73 protected areas across the continent estimated to hold ~50% of Africa's elephants and extracted densities from 18 broadly stable population time series. We modeled these densities using primary productivity, water availability, and an index of poaching as predictors. We then used the model to predict stable densities given current conditions and poaching for all 73 populations. Next, to generate ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where historical data are available, they corroborate or exceed benchmarks. According to recent counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted based on current conditions and poaching levels. However, populations are at <25% of ecological benchmarks given a scenario of zero poaching (~967,000)-a total deficit of ~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their benchmarks, and the median current density as a percentage of ecological benchmark across protected areas was just 13%. The ecological context provided by these benchmark values, in conjunction with ongoing census projects, allow efficient targeting of conservation efforts.Item Open Access The 2020 elephant die-off in Botswana.(PeerJ, 2021-01-11) van Aarde, Rudi J; Pimm, Stuart L; Guldemond, Robert; Huang, Ryan; Maré, CelestéThe cause of deaths of 350 elephants in 2020 in a relatively small unprotected area of northern Botswana is unknown, and may never be known. Media speculations about it ignore ecological realities. Worse, they make conjectures that can be detrimental to wildlife and sometimes discredit conservation incentives. A broader understanding of the ecological and conservation issues speaks to elephant management across the Kavango-Zambezi Transfrontier Conservation Area that extends across Botswana, Namibia, Angola, Zambia, and Zimbabwe. Our communication addresses these. Malicious poisoning and poaching are unlikely to have played a role. Other species were unaffected, and elephant carcases had their tusks intact. Restriction of freshwater supplies that force elephants to use pans as a water source possibly polluted by blue-green algae blooms is a possible cause, but as yet not supported by evidence. No other species were involved. A contagious disease is the more probable one. Fences and a deep channel of water confine these elephants' dispersal. These factors explain the elephants' relatively high population growth rate despite a spell of increased poaching during 2014-2018. While the deaths represent only ~2% of the area's elephants, the additive effects of poaching and stress induced by people protecting their crops cause alarm. Confinement and relatively high densities probably explain why the die-off occurred only here. It suggests a re-alignment or removal of fences that restrict elephant movements and limits year-round access to freshwater.