Browsing by Subject "β-arrestin"
- Results Per Page
- Sort Options
Item Open Access Characterization of Beta-arrestin-Modulated Lipid Kinase Activities for Diacylglycerol and Phosphatidylinositol 4-Phosphate(2007-05-10T15:22:51Z) Nelson, Christopher DavidThe study of arrestins as regulators of seven transmembrane receptor (7TMR) signaling has revealed multiple levels of complexity, initiating desensitization of G protein activity and coordination of receptor internalization via clathrin‐coated pits. Recently, β‐arrestins have also been shown to act as adaptor proteins, mediating G protein‐independent signaling as well as scaffolding of enzymes that degrade second messenger molecules. This latter function was demonstrated by β‐arrestins recruiting PDE4 phosphodiesterase to Gs‐coupled β2‐adrenergic receptors, enhancing metabolism of the second messenger cAMP. As β‐arrestins universally interact with members of the 7TMR superfamily, we sought to determine if this phenomenon of concerted desensitization might be applicable to additional receptor subtypes. We screened for β‐arrestin‐binding proteins among modulators of diacylglycerol and IP3 (second messengers downstream of Gq‐coupled 7TMRs). We observed β‐ arrestins constitutively interacted with members of the diacylglycerol kinase (DGK) family, which phosphorylate diacylglycerol to create phosphatidic acid. Furthermore, examining lipid extracts of 32P labeled cells separated by TLC, we observed that overexpression of β‐arrestin enhanced phosphatidic acid (PA) production after M1 muscarinic receptor stimulation. Conversely, depletion of β‐arrestins by RNA interference showed significantly decreased agonist‐stimulated PA accumulation. Additionally, overexpression of a β‐arrestin2 mutant that binds DGKs but not receptors served as a dominant negative for agonist‐dependent DGK activity. These results demonstrate a requirement for β‐arrestins in DGK translocation to the membrane, and specifically to activated 7TMRs, where concentrations of second messengers are at their highest. Phosphatidic acid is an effector for several enzymes, including the phosphatidylinositol 5‐kinases (PIP5K), which phosphorylate PIP to make PIP2. Thus, we hypothesized β‐arrestin‐targeted DGKs may regulate PIP5K activity. PIP5K Iα associated with β‐arrestin2 in an agonist‐dependent manner in HEK293 cells, and a β‐ arrestin2 mutant defective in receptor endocytosis (a PIP2‐dependent function) was impaired. Furthermore, knockdown of β‐arrestin2 by RNAi significantly decreased the amount of PIP5K Iα detected in receptor immunoprecipitates. In TLC assays, overexpressing both β‐arrestin2 and PIP5K Iα enhanced agonist‐stimulated PIP2 labeling, while either protein alone had no effect. These data support the concept of β‐ arrestin binding to 7TMRs and enriching local membrane concentrations of PA, which then stimulates production of PIP2, promoting receptor internalization.Item Open Access Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS.(Environ Health Perspect, 2009-03) Li, Jinju; Ghio, Andrew J; Cho, Seung-Hyun; Brinckerhoff, Constance E; Simon, Sidney A; Liedtke, WolfgangBACKGROUND: Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE: We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS: Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION: Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2.Item Open Access Functional Selectivity at the Dopamine D2 Receptor(2015) Peterson, Sean MichaelThe neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G protein and β-arrestin pathways and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased interactions for either G protein or β-arrestin. Additionally, various permutations of these mutants were used to identify critical determinants of D2R functional selectivity. D2R interactions with the two major downstream signal transducers were effectively dissociated and G protein signaling accounts for D2R canonical MAP kinase signaling cascade activation. Nevertheless, when expressed in mice, the β-arrestin biased D2R caused a significant potentiation of amphetamine-induced locomotion, while the G protein biased D2R had minimal effects. The mutant receptors generated here provide a new molecular tool set that enable a better definition of the individual roles of G protein and β-arrestin signaling in D2R pharmacology, neurobiology and associated pathologies.