Browsing by Subject "2-PHASE FLOWS"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access An energy stable C0 finite element scheme for a quasi-incompressible phase-field model of moving contact line with variable density(Journal of Computational Physics, 2020-03-15) Shen, L; Huang, H; Lin, P; Song, Z; Xu, SIn this paper, we focus on modeling and simulation of two-phase flow problems with moving contact lines and variable density. A thermodynamically consistent phase-field model with general Navier boundary condition is developed based on the concept of quasi-incompressibility and the energy variational method. A mass conserving C0 finite element scheme is proposed to solve the PDE system. Energy stability is achieved at the fully discrete level. Various numerical results confirm that the proposed scheme for both P1 element and P2 element are energy stable.Item Open Access Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants(Physics of Fluids, 2014-06-05) Zhang, Z; Xu, S; Ren, WA continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as well as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically. © 2014 AIP Publishing LLC.