Browsing by Subject "ALGORITHM"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Changes in evapotranspiration and phenology as consequences of shrub removal in dry forests of central Argentina(Ecohydrology, 2015-10-01) Marchesini, VA; Fernández, RJ; Reynolds, JF; Sobrino, JA; Di Bella, CMMore than half of the dry woodlands (forests and shrublands) of the world are in South America, mainly in Brazil and Argentina, where in the last years intense land use changes have occurred. This study evaluated how the transition from woody-dominated to grass-dominated system affected key ecohydrological variables and biophysical processes over 20000ha of dry forest in central Argentina. We used a simplified surface energy balance model together with moderate-resolution imaging spectroradiometer-normalized difference vegetation index data to analyse changes in above primary productivity, phenology, actual evapotranspiration, albedo and land surface temperature for four complete growing seasons (2004-2009). The removal of woody vegetation decreased aboveground primary productivity by 15-21%, with an effect that lasted at least 4years, shortened the growing season between 1 and 3months and reduced evapotranspiration by as much as 30%. Albedo and land surface temperature increased significantly after the woody to grassland conversion. Our findings highlight the role of woody vegetation in regulating water dynamics and ecosystem phenology and show how changes in vegetative cover can influence regional climatic change. © 2015 John WileyItem Open Access Data clustering based on Langevin annealing with a self-consistent potential(Quarterly of Applied Mathematics, 2018-10-11) Lafata, K; Zhou, Z; Liu, JG; Yin, FFItem Open Access Generalized multipolaron expansion for the spin-boson model: Environmental entanglement and the biased two-state system(Physical Review B - Condensed Matter and Materials Physics, 2014-08-07) Bera, S; Nazir, A; Chin, AW; Baranger, HU; Florens, SWe develop a systematic variational coherent-state expansion for the many-body ground state of the spin-boson model, in which a quantum two-level system is coupled to a continuum of harmonic oscillators. Energetic constraints at the heart of this technique are rationalized in terms of polarons (displacements of the bath states in agreement with classical expectations) and antipolarons (counterdisplacements due to quantum tunneling effects). We present a comprehensive study of the ground-state two-level system population and coherence as a function of tunneling amplitude, dissipation strength, and bias (akin to asymmetry of the double-well potential defining the two-state system). The entanglement among the different environmental modes is investigated by looking at spectroscopic signatures of the bipartite entanglement entropy between a given environmental mode and all the other modes. We observe a drastic change in behavior of this entropy for increasing dissipation, indicative of the entangled nature of the environmental states. In addition, the entropy spreads over a large energy range at strong dissipation, a testimony to the wide entanglement window characterizing the underlying Kondo state. Finally, comparisons to accurate numerical renormalization-group calculations and to the exact Bethe ansatz solution of the model demonstrate the rapid convergence of our variationally optimized multipolaron expansion, suggesting that it should also be a useful tool for dissipative models of greater complexity, as relevant for numerous systems of interest in quantum physics and chemistry. © 2014 American Physical Society.