Browsing by Subject "ALIGNMENT"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A revised generic classification of vittarioid ferns (Pteridaceae) based on molecular, micromorphological, and geographic data(Taxon, 2016-08-01) Schuettpelz, E; Chen, C; Kessler, M; Pinson, JB; Johnson, G; Davila, A; Cochran, AT; Huiet, L; Pryer, KM© International Association for Plant Taxonomy (IAPT) 2016. Vittarioid ferns compose a well-supported clade of 100-130 species of highly simplified epiphytes in the family Pteridaceae. Generic circumscriptions within the vittarioid clade were among the first in ferns to be evaluated and revised based on molecular phylogenetic data. Initial analyses of rbcL sequences revealed strong geographic structure and demonstrated that the two largest vittarioid genera, as then defined, each had phylogenetically distinct American and Old World components. The results of subsequent studies that included as many as 36 individuals of 33 species, but still relied on a single gene, were generally consistent with the early findings. Here, we build upon the previous datasets, incorporating many more samples (138 individuals representing 72 species) and additional plastid markers (atpA, chlN, rbcL, rpoA). Analysis of our larger dataset serves to better characterize known lineages, reveals new lineages, and ultimately uncovers an underlying geographic signal that is even stronger than was previously appreciated. In our revised generic classification, we recognize a total of eleven vittarioid genera. Each genus, including the new genus Antrophyopsis (Benedict) Schuettp., stat. nov., is readily diagnosable based on morphology, with micromorphological characters related to soral paraphyses and spores complementing more obvious features such as venation and the distribution of sporangia. A key to the currently recognized vittarioid genera, brief generic descriptions, and five new species combinations are provided.Item Open Access Analyzing X-ray tomographies of granular packings.(The Review of scientific instruments, 2017-05) Weis, Simon; Schröter, MatthiasStarting from three-dimensional volume data of a granular packing, as, e.g., obtained by X-ray Computed Tomography, we discuss methods to first detect the individual particles in the sample and then analyze their properties. This analysis includes the pair correlation function, the volume and shape of the Voronoi cells, and the number and type of contacts formed between individual particles. We mainly focus on packings of monodisperse spheres, but we will also comment on other monoschematic particles such as ellipsoids and tetrahedra. This paper is accompanied by a package of free software containing all programs (including source code) and an example three-dimensional dataset which allows the reader to reproduce and modify all examples given.Item Open Access Maidenhair ferns, adiantum, are indeed monophyletic and sister to shoestring ferns, vittarioids (Pteridaceae)(Systematic Botany, 2016-01-01) Pryer, KM; Huiet, L; Li, F; Rothfels, CJ; Schuettpelz, E© 2016 by the American Society of Plant Taxonomists. Across the tree of life, molecular phylogenetic studies often reveal surprising relationships between taxa with radically different morphologies that have long obscured their close affiliations. A spectacular botanical example is Rafflesia, a holoparasite that produces the largest flowers in the world, but that evolved from tiny-flowered ancestors within the Euphorbiaceae. Outside of parasitic lineages, such abrupt transformations are rarely seen. One exception involves the "maidenhair ferns" (Adiantum), which are quintessential ferns: beautifully dissected, terrestrial, and shade loving. The closely related "shoestring ferns" (vittarioids), in contrast, have an extremely simplified morphology, are canopy-dwelling epiphytes, and exhibit greatly accelerated rates of molecular evolution. While Adiantum and the vittarioids together have been shown to form a robust monophyletic group (adiantoids), there remain unanswered questions regarding the monophyly of Adiantum and the evolutionary history of the vittarioids. Here we review recent phylogenetic evidence suggesting support for the monophyly of Adiantum, and analyze new plastid data to confirm this result. We find that Adiantum is monophyletic and sister to the vittarioids. With this robust phylogenetic framework established for the broadest relationships in the adiantoid clade, we can now focus on understanding the evolutionary processes associated with the extreme morphological, ecological, and genetic transitions that took place within this lineage.Item Open Access Origins of the endemic scaly tree ferns on the galápagos and Cocos Islands(International Journal of Plant Sciences, 2015-11-01) Kao, T; Pryer, KM; Turner, MD; White, RA; Korall, P© 2015 by The University of Chicago. All rights reserved. Premise of research. Successful long-distance dispersal is rarely observed in scaly tree ferns (Cyatheaceae). Nevertheless, recent molecular evidence has suggested that the four endemic scaly tree ferns on the Galápagos Archipelago (Cyathea weatherbyana) and Cocos Island (Cyathea alfonsiana, Cyathea nesiotica, and Cyathea notabilis), two oceanic island groups west of Central and northern South America, probably each originated from different mainland America ancestors. However, the phylogenetic relationships inferred among these endemics and their mainland relatives have been unclear. This study is aimed at better resolving the relationships and tracing the origins of these island endemics. Methodology. Five plastid regions from 35 Cyathea species were analyzed to reconstruct phylogenetic relationships using parsimony, likelihood, and Bayesian approaches. We also estimated divergence times of these species, and our chronogram was used to reconstruct their biogeographical range history. Pivotal results. Our well-resolved phylogenetic tree of Cyathea, which is in agreement with previous studies, shows that when the four Galápagos and Cocos endemics are included, they each belong to separate subclades. Our biogeographical study suggests that the four endemics originated from independent colonization events from mainland America and that there was no dispersal of Cyathea between the island groups. We reveal more detailed relationships among the endemics and their respective close mainland relatives; some of these relationships differ from previous studies. Our findings are corroborated by new morphological data from ongoing stem anatomy studies. Conclusions. The four scaly tree ferns endemic to the Galápagos and Cocos Islands each did indeed originate as independent colonization events from separate sources in mainland America, and their closest relatives are identified here.