Browsing by Subject "Acetyl Coenzyme A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.(Applied microbiology and biotechnology, 2017-02) Whitham, Jason M; Schulte, Mark J; Bobay, Benjamin G; Bruno-Barcena, Jose M; Chinn, Mari S; Flickinger, Michael C; Pawlak, Joel J; Grunden, Amy MA Clostridium ljungdahlii lab-isolated spontaneous-mutant strain, OTA1, has been shown to produce twice as much ethanol as the C. ljungdahlii ATCC 55383 strain when cultured in a mixotrophic medium containing fructose and syngas. Whole-genome sequencing identified four unique single nucleotide polymorphisms (SNPs) in the C. ljungdahlii OTA1 genome. Among these, two SNPs were found in the gene coding for AcsA and HemL, enzymes involved in acetyl-CoA formation from CO/CO2. Homology models of the respective mutated enzymes revealed alterations in the size and hydrogen bonding of the amino acids in their active sites. Failed attempts to grow OTA1 autotrophically suggested that one or both of these mutated genes prevented acetyl-CoA synthesis from CO/CO2, demonstrating that its activity was required for autotrophic growth by C. ljungdahlii. An inoperable Wood-Ljungdahl pathway resulted in higher CO2 and ethanol yields and lower biomass and acetate yields compared to WT for multiple growth conditions including heterotrophic and mixotrophic conditions. The two other SNPs identified in the C. ljungdahlii OTA1 genome were in genes coding for transcriptional regulators (CLJU_c09320 and CLJU_c18110) and were found to be responsible for deregulated expression of co-localized arginine catabolism and 2-deoxy-D-ribose catabolism genes. Growth medium supplementation experiments suggested that increased arginine metabolism and 2-deoxy-D-ribose were likely to have minor effects on biomass and fermentation product yields. In addition, in silico flux balance analysis simulating mixotrophic and heterotrophic conditions showed no change in flux to ethanol when flux through HemL was changed whereas limited flux through AcsA increased the ethanol flux for both simulations. In characterizing the effects of the SNPs identified in the C. ljungdahlii OTA1 genome, a non-autotrophic hyper ethanol-producing strain of C. ljungdahlii was identified that has utility for further physiology and strain performance studies and as a biocatalyst for industrial applications.Item Open Access Wnt Protein Signaling Reduces Nuclear Acetyl-CoA Levels to Suppress Gene Expression during Osteoblast Differentiation.(J Biol Chem, 2016-06-17) Karner, Courtney M; Esen, Emel; Chen, Jiakun; Hsu, Fong-Fu; Turk, John; Long, FanxinDevelopmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.