Browsing by Subject "Acoustic Emission"
- Results Per Page
- Sort Options
Item Open Access Injury Detection and Localization in the Spine using Acoustic Emission(2016) Shridharani, Jay KetanThe National Spinal Cord Injury Statistical Center estimates there are 12,500 new cases of spinal cord injury (SCI) in the United States every year (www.nscisc.uab.edu, 2014) and vehicular crashes are the leading cause. Spinal injuries can have extensive long term consequences leading to widespread social and economic costs as well as the human cost of living with chronic, sometimes debilitating, pain (Côté et al. 1998, Côté et al. 2001, Daffner et al. 2003, Harrop et al. 2001, Sekhon et al. 2001). Within the military population, spinal injuries are a common result of repeated loading from high-speed planing watercraft (Bass et al. 2005, Gollwitzer et al. 1995, Schmidt et al. 2012), high performance aircraft (Coakwell et al. 2004, de Oliviera et al. 2005), and underbody blast exposure (Vasquez et al. 2011, Wilson 2006). Therefore, there is interest within the automotive, military, and clinical communities to understand the biomechanics the failure mechanics of the osteoligamentous structures in the spine.
Acoustic emissions have been shown to be produced during micro-cracking of cortical bone (Kohn 1995). However, there has been minimal work utilizing acoustic emission to detect cortical and trabecular bone damage. The research in this dissertation developed experimental and analytic methods of sensitively assessing when failure (both micro-cracks and more extensive failures) occurs in the cervical spine using acoustic emissions.
The acoustic emissions from cortical and trabecular bone failure were characterized using a Welch power spectrum density estimate and continuous wavelet transform. The power spectrum density results showed both cortical bone and trabecular bone failure produced wideband acoustic emission signals with spectral peaks between from 20 kHz to 1380 kHz and 24 kHz to 1382 kHz respectively. The continuous wavelet transform showed the spectral content begins with high frequency content followed quickly by low frequency content, but the low frequency lasts for a longer time causing it to dominate the response in the Welch power spectrum density. The first frequency component in the continuous wavelet transform was used to characterize the signals and was found to form three distinct bands in the cortical bone tests (166 ± 52.6 kHz, 379 ± 37.2 kHz, and 668 ± 63.4 kHz) and one band in the trabecular bone tests (185 ± 37.9 kHz). Therefore, observing spectral content within these bands suggests failure of the respective bone.
This dissertation also uses continuous wavelet transform to identify failure in whole cervical spine compression tests. Whole cervical spines placed in a pre-flexed and pre-extended posture were compressed to induce failure while being monitored for acoustic emissions. Cortical bone failure was identified in the acoustic emissions when local maxima in the continuous wavelet transform fell within the spectral bands associated with cortical bone failure previously identified. The timing of these failures was matched to the force-displacement response to identify the initiation of failure and the major failure. Cortical bone failure was detected at 70-90% of the failure load suggesting that the failure occurs as an evolution from micro-cracks to the eventual major failure. Locating these micro-cracks before the major failure forms may be useful in the prediction of the location of failure.
This dissertation also presents a technique to calculate the AE source location for AEs generated from fracture. The primary obstacle for AE source localization in the spine is that the speed of sound is different in cortical bone (Prevrhal et al. 2001), trabecular bone (Cardoso et al. 2003), intervertebral disc (Pluijm et al. 2004), ligaments (Kijima et al. 2009), and also differs based on its direction of travel in cortical bone (Kann et al. 1993) and likely in the other materials. Any algorithm must account for these differences to obtain any useful level of accuracy. The algorithm presented in this dissertation is based on hyperbolic source location algorithms (De Ronde et al. 2007, O'Toole et al. 2012, Salinas et al. 2010) except that it iterates on the speed of sound over a specified range, and convergence is defined as when the solution change is minimized. This procedure calculated the AE source location with a mean error of 5.7 mm and a standard deviation of 3.8 mm.
The contributions and conclusions of this dissertation provide methodology and results to evaluate the failure mechanics in the spine. Although these procedures were developed for use in the spine, they are of great value to the biomechanics community because they are applicable to every body region. The recommendations presented will serve to better understand the failure mechanics of the human body and will likely lead to better defined and safer standards for protective equipment. It also provides data for the generation of finite element models that require failure criteria.
Item Embargo Injury Risks in Behind Armor Blunt Trauma(2024) Op 't Eynde, JoostBody armor protects law enforcement and military personnel from gunshot wounds to the thorax. However, even when a round is stopped, armor can deform into the thorax at high rate and produce injuries. To evaluate armor protection against this behind armor blunt trauma (BABT), an outdated standard developed in the 1970s is currently used. The applicability of the standard to modern design and its biofidelity are questionable. There is a need for biofidelic models and accurate injury criteria for BABT.
To support numerical modeling of high rate insults, material property characterizations are essential. Pure shear tests at high rate and high shear strain were performed on porcine dorsal skin, ventral skin, liver, and lung tissue post-mortem. Synthetic gelatin was subjected to the same shear tests, to evaluate its validity as a tissue surrogate. Instantaneous elastic shear properties of the tissues were determined, and their stress relaxation over short and long timescales. Dorsal skin tissue was found to have the highest shear stiffness, followed by ventral skin, liver, and lung. Synthetic 10-20% gelatin approximates the instantaneous elastic shear properties of porcine dorsal skin but does not show the same viscoelastic relaxation behavior. Synthetic 10% gelatin behaved similarly to 20% gelatin in stress relaxation, but with significantly reduced shear stiffness. Shear moduli of biological tissues increase with increased shear strain, suggesting a non-linear model is appropriate for computational purposes.
To recreate BABT in an experimental setting, a 3D-printed acrylic indenter was developed. This indenter replicates the backface deformation of the body armor into the chest, matching velocity and aerial density of hard body armor. The performance of the indenter was evaluated using the current clay testing standard (n = 52). The obtained deformations in clay match those from previous hard armor experiments. The limitations of using clay as a surrogate for behind armor blunt trauma are discussed in relation to the indenter performance: clay is inconsistent and produces and unpredictable elastic rebound obfuscating the final deformation measurement used in the standard. Equivalent exposures comparing indenter velocity to rifle round velocity are used to translate indenter impacts to in-field scenarios.
Indenter BABT impacts (n = 117) were performed on porcine (n = 16) and human (n = 18) cadavers to establish injury scaling from pig to human. Impactor dynamics were determined using an onboard accelerometer and high-speed video, and rib fractures were assessed using post-test micro-CT imaging and necropsy. Regional injury risk curves were developed for different impact locations on the human cadaver (n = 6) thorax and different injury severity levels, indicating the risk might not be uniform. The injury threshold for anterior ribcage injuries is lower than for the posterior ribcage. The kinetic energy of the impact was scaled according to body mass based on equal velocity scaling, widely used in injury biomechanics. Confidence intervals of injury risk curves substantially overlap for the human and swine cadavers, suggesting that this scaling is appropriate for transferring risk across these species. Residual energy differences of 20 to 30% for similar injury risk between the human and swine cadavers suggest an additional bone quality scaling is desirable since the swine cadavers are generally at an earlier developmental age than available human cadavers. The structural scaling relationships between the human and swine cadavers are valuable in interpreting injury results from live animal BABT tests.
In vivo swine (n = 18) were subjected to BABT impacts to the ribcage. Chest wall and lung injuries were assessed using necropsy and histology, and injury risk curves were developed for different severity injuries based on the kinetic energy of the impact. The resulting injury risks are compared to those obtained for human cadavers. Chest wall injury risk corresponds closely with lung injury risk severity. Injury risks for lateral ribcage impacts in the live swine are close to posterior ribcage impact injury risks in the human cadaver, but injury risks are lower than for frontal impacts in human cadavers. Acoustic emissions of rib fractures were non-invasively detected during BABT impact with the use of hydrophones. Obtained injury risks and fracture detection may guide future armor design and injury monitoring.
A novel modality of lung injury was observed in the live swine impacts. Advancement of the chest wall into the lung tissue at high velocity produces a local compressive shock that can damage alveolar walls and cause bleeding within the lung tissue. A theoretical basis for shock development, experimental shock pressure measurements, and characteristic injuries are presented.