Browsing by Subject "Adrenergic beta-1 Receptor Agonists"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor.(Proc Natl Acad Sci U S A, 1999-10-26) Tang, Y; Hu, LA; Miller, WE; Ringstad, N; Hall, RA; Pitcher, JA; DeCamilli, P; Lefkowitz, RJSeveral G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.Item Open Access β-arrestin1-biased β1-adrenergic receptor signaling regulates microRNA processing.(Circulation research, 2014-02) Kim, Il-Man; Wang, Yongchao; Park, Kyoung-Mi; Tang, Yaoping; Teoh, Jian-Peng; Vinson, Joseph; Traynham, Christopher J; Pironti, Gianluigi; Mao, Lan; Su, Huabo; Johnson, John A; Koch, Walter J; Rockman, Howard ARationale
MicroRNAs (miRs) are small, noncoding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes after activation by a variety of signals such as those stimulated by β-adrenergic receptors (βARs). Initially discovered to desensitize βAR signaling, β-arrestins are now appreciated to transduce multiple effector pathways independent of G-protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the β-arrestin-biased βAR agonist, carvedilol, activates cellular pathways in the heart.Objective
Here, we tested whether carvedilol could activate β-arrestin-mediated miR maturation, thereby providing a novel potential mechanism for its cardioprotective effects.Methods and results
In human cells and mouse hearts, carvedilol upregulates a subset of mature and pre-miRs, but not their pri-miRs, in β1AR-, G-protein-coupled receptor kinase 5/6-, and β-arrestin1-dependent manner. Mechanistically, β-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs.Conclusions
Our findings indicate a novel function for β1AR-mediated β-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival.