Browsing by Subject "Adult Stem Cells"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage.(PLoS One, 2012) Muller-Borer, Barbara; Esch, Gwyn; Aldina, Rob; Woon, Woohyun; Fox, Raymond; Bursac, Nenad; Hiller, Sylvia; Maeda, Nobuyuo; Shepherd, Neal; Jin, Jian Ping; Hutson, Mary; Anderson, Page; Kirby, Margaret L; Malouf, Nadia NThe phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.Item Open Access Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix.(Tissue Eng Part A, 2010-02) Diekman, Brian O; Rowland, Christopher R; Lennon, Donald P; Caplan, Arnold I; Guilak, FarshidOBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.Item Open Access Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study.(Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2011-04) Prasad, Vinod K; Lucas, Kenneth G; Kleiner, Gary I; Talano, Julie An M; Jacobsohn, David; Broadwater, Gloria; Monroy, Rod; Kurtzberg, JoannePreliminary studies using directed-donor ex vivo expanded human mesenchymal stem cells (hMSCs) have shown promise in the treatment of acute graft-versus-host disease (aGVHD). However, their production is cumbersome and standardization is difficult. We describe the first experience of using a premanufactured, universal donor, formulation of hMSCs (Prochymal) in children (n = 12; 10 boys; 9 Caucasian; age range: 0.4-15 years) with treatment-resistant grade III and IV aGVHD who received therapy on compassionate use basis between July 2005 and June 2007 at 5 transplant centers. All patients had stage III or IV gut (GI) symptoms and half had additional liver and/or skin involvement. Disease was refractory to steroids in all cases and additionally to a median of 3 other immunosuppressive therapies. The hMSCs (8 × 10(6)cells/kg/dose in 2 patients and 2 × 10(6)cells/kg/dose in the rest) were infused intravenously over 1 hour twice a week for 4 weeks. Partial and mixed responders received subsequent weekly therapy for 4 weeks. HLA or other matching was not needed. The hMSCs were started at a median of 98 days (range: 45-237) posttransplant. A total of 124 doses were administered, with a median of 8 doses (range: 2-21) per patient. Overall, 7 (58%) patients had complete response, 2 (17%) partial response, and 3 (25%) mixed response. Complete resolution of GI symptoms occurred in 9 (75%) patients. Two patients relapsed after initial response and showed partial response to retreatment. The cumulative incidence of survival at 100 days from the initiation of Prochymal therapy was 58%. Five of 12 patients (42%) were still alive after a median follow-up of 611 days (range: 427-1111) in surviving patients. No infusional or other identifiable acute toxicity was seen in any patient. Multiple infusions of hMSCs were well tolerated and appeared to be safe in children. Clinical responses, particularly in the GI system, were seen in the majority of children with severe refractory aGVHD. Given the favorable results observed in a patient population with an otherwise grave prognosis, we conclude that hMSCs hold potential for the treatment of aGVHD, and should be further studied in phase III trials in pediatric and adult patients.Item Open Access Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering.(Tissue Eng Part A, 2010-04) Moutos, Franklin T; Guilak, FarshidArticular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.Item Open Access Type 2 alveolar cells are stem cells in adult lung.(The Journal of clinical investigation, 2013-07) Barkauskas, Christina E; Cronce, Michael J; Rackley, Craig R; Bowie, Emily J; Keene, Douglas R; Stripp, Barry R; Randell, Scott H; Noble, Paul W; Hogan, Brigid LMGas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.