Browsing by Subject "Alleles"
Now showing 1 - 20 of 65
Results Per Page
Sort Options
Item Open Access A cross-species approach using an in vivo evaluation platform in mice demonstrates that sequence variation in human RABEP2 modulates ischemic stroke outcomes.(American journal of human genetics, 2022-10) Lee, Han Kyu; Kwon, Do Hoon; Aylor, David L; Marchuk, Douglas AIschemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.Item Open Access A Functional Polymorphism (rs2494752) in the AKT1 Promoter Region and Gastric Adenocarcinoma Risk in an Eastern Chinese Population.(Scientific reports, 2016-01-28) Wang, Meng-Yun; He, Jing; Zhu, Mei-Ling; Teng, Xiao-Yan; Li, Qiao-Xin; Sun, Meng-Hong; Wang, Xiao-Feng; Yang, Ya-Jun; Wang, Jiu-Cun; Jin, Li; Wang, Ya-Nong; Wei, Qing-YiAKT is an important signal transduction protein that plays a crucial role in cancer development. Therefore, we evaluated associations between single nucleotide polymorphisms (SNPs) in the AKT promoter region and gastric cancer (GCa) risk in a case-control study of 1,110 GCa patients and 1,114 matched cancer-free controls. We genotyped five SNPs (AKT1 rs2494750G >C, AKT1 rs2494752A >G, AKT1 rs10138227C >T, AKT2 rs7254617G>A and AKT2 rs2304186G >T) located in the 5' upstream regulatory, first intron or promoter regions. In the logistic regression analysis, a significantly elevated GCa risk was associated with the rs2494752 AG/GG variant genotypes (adjusted odds ratio [OR] = 1.20, 95% confidence interval [CI] = 1.02-1.42) under a dominant genetic model, and this risk was more evident in subgroups of ever drinkers. The luciferase reporter assay showed that the rs2494752 G allele significantly increased luciferase activity. Our results suggest that the potentially functional AKT1 rs2494752 SNP may affect GCa susceptibility, likely by modulating the AKT1 promoter transcriptional activity. Larger, independent studies are warranted to validate our findings.Item Open Access A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium.(J Gerontol A Biol Sci Med Sci, 2010-05) Newman, Anne B; Walter, Stefan; Lunetta, Kathryn L; Garcia, Melissa E; Slagboom, P Eline; Christensen, Kaare; Arnold, Alice M; Aspelund, Thor; Aulchenko, Yurii S; Benjamin, Emelia J; Christiansen, Lene; D'Agostino, Ralph B; Fitzpatrick, Annette L; Franceschini, Nora; Glazer, Nicole L; Gudnason, Vilmundur; Hofman, Albert; Kaplan, Robert; Karasik, David; Kelly-Hayes, Margaret; Kiel, Douglas P; Launer, Lenore J; Marciante, Kristin D; Massaro, Joseph M; Miljkovic, Iva; Nalls, Michael A; Hernandez, Dena; Psaty, Bruce M; Rivadeneira, Fernando; Rotter, Jerome; Seshadri, Sudha; Smith, Albert V; Taylor, Kent D; Tiemeier, Henning; Uh, Hae-Won; Uitterlinden, André G; Vaupel, James W; Walston, Jeremy; Westendorp, Rudi GJ; Harris, Tamara B; Lumley, Thomas; van Duijn, Cornelia M; Murabito, Joanne MBACKGROUND: Genome-wide association studies (GWAS) may yield insights into longevity. METHODS: We performed a meta-analysis of GWAS in Caucasians from four prospective cohort studies: the Age, Gene/Environment Susceptibility-Reykjavik Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Longevity was defined as survival to age 90 years or older (n = 1,836); the comparison group comprised cohort members who died between the ages of 55 and 80 years (n = 1,955). In a second discovery stage, additional genotyping was conducted in the Leiden Longevity Study cohort and the Danish 1905 cohort. RESULTS: There were 273 single-nucleotide polymorphism (SNP) associations with p < .0001, but none reached the prespecified significance level of 5 x 10(-8). Of the most significant SNPs, 24 were independent signals, and 16 of these SNPs were successfully genotyped in the second discovery stage, with one association for rs9664222, reaching 6.77 x 10(-7) for the combined meta-analysis of CHARGE and the stage 2 cohorts. The SNP lies in a region near MINPP1 (chromosome 10), a well-conserved gene involved in regulation of cellular proliferation. The minor allele was associated with lower odds of survival past age 90 (odds ratio = 0.82). Associations of interest in a homologue of the longevity assurance gene (LASS3) and PAPPA2 were not strengthened in the second stage. CONCLUSION: Survival studies of larger size or more extreme or specific phenotypes may support or refine these initial findings.Item Open Access A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation.(The Journal of biological chemistry, 2012-09) Parvatiyar, MS; Landstrom, AP; Figueiredo-Freitas, C; Potter, JD; Ackerman, MJ; Pinto, JRDefined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.Item Open Access A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation.(PLoS Biol, 2010-09-28) Lowry, David B; Willis, John HThe role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements.Item Open Access Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan.(PLoS Genet, 2014-01) Kulminski, Alexander M; Arbeev, Konstantin G; Culminskaya, Irina; Arbeeva, Liubov; Ukraintseva, Svetlana V; Stallard, Eric; Christensen, Kaare; Schupf, Nicole; Province, Michael A; Yashin, Anatoli IEnduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6 × 10(-6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0 × 10(-7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3 × 10(-8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms.Item Open Access Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: a retrospective analysis.(The Lancet. Haematology, 2017-07) Eapen, Mary; Wang, Tao; Veys, Paul A; Boelens, Jaap J; St Martin, Andrew; Spellman, Stephen; Bonfim, Carmem Sales; Brady, Colleen; Cant, Andrew J; Dalle, Jean-Hugues; Davies, Stella M; Freeman, John; Hsu, Katherine C; Fleischhauer, Katharina; Kenzey, Chantal; Kurtzberg, Joanne; Michel, Gerard; Orchard, Paul J; Paviglianiti, Annalisa; Rocha, Vanderson; Veneris, Michael R; Volt, Fernanda; Wynn, Robert; Lee, Stephanie J; Horowitz, Mary M; Gluckman, Eliane; Ruggeri, AnnalisaBackground
The standard for selecting unrelated umbilical cord blood units for transplantation for non-malignant diseases relies on antigen-level (lower resolution) HLA typing for HLA-A and HLA-B, and allele-level for HLA-DRB1. We aimed to study the effects of allele-level matching at a higher resolution-HLA-A, HLA-B, HLA-C, and HLA-DRB1, which is the standard used for adult unrelated volunteer donor transplantation for non-malignant diseases-for umbilical cord blood transplantation.Methods
We retrospectively studied 1199 paediatric donor-recipient pairs with allele-level HLA matching who received a single unit umbilical cord blood transplantation for non-malignant diseases reported to the Center for International Blood and Marrow Transplant Research or Eurocord and European Group for Blood and Marrow Transplant. Transplantations occurred between Jan 1, 2000, and Dec 31, 2012. The primary outcome was overall survival. The effect of HLA matching on survival was studied using a Cox regression model.Findings
Compared with HLA-matched transplantations, mortality was higher with transplantations mismatched at two (hazard ratio [HR] 1·55, 95% CI 1·08-2·21, p=0·018), three (2·04, 1·44-2·89, p=0·0001), and four or more alleles (3·15, 2·16-4·58, p<0·0001). There were no significant differences in mortality between transplantations that were matched and mismatched at one allele (HR 1·18, 95% CI 0·80-1·72, p=0·39). Other factors associated with higher mortality included recipient cytomegalovirus seropositivity (HR 1·40, 95% CI 1·13-1·74, p=0·0020), reduced intensity compared with myeloablative conditioning regimens (HR 1·36, 1·10-1·68, p=0·0041), transplantation of units with total nucleated cell dose of more than 21 × 107 cells per kg compared with 21 × 107 cells per kg or less (HR 1·47, 1·11-1·95, p=0·0076), and transplantations done in 2000-05 compared with those done in 2006-12 (HR 1·64, 1·31-2·04, p<0·0001). The 5-year overall survival adjusted for recipient cytomegalovirus serostatus, conditioning regimen intensity, total nucleated cell dose, and transplantation period was 79% (95% CI 74-85) after HLA matched, 76% (71-81) after one allele mismatched, 70% (65-75) after two alleles mismatched, 62% (57-68) after three alleles mismatched, and 49% (41-57) after four or more alleles mismatched transplantations. Graft failure was the predominant cause of mortality.Interpretation
These data support a change from current practice in that selection of unrelated umbilical cord blood units for transplantation for non-malignant diseases should consider allele-level HLA matching at HLA-A, HLA-B, HLA-C, and HLA-DRB1.Funding
National Cancer Institute; National Heart, Lung, and Blood Institute; National Institute for Allergy and Infectious Diseases; US Department of Health and Human Services-Health Resources and Services Administration; and US Department of Navy.Item Open Access Analyses of pediatric isolates of Cryptococcus neoformans from South Africa.(J Clin Microbiol, 2011-01) Miglia, Kathleen J; Govender, Nelesh P; Rossouw, Jenny; Meiring, Susan; Mitchell, Thomas G; Group for Enteric, Respiratory and Meningeal Disease Surveillance in South AfricaCompared to the incidence in adults, cryptococcosis is inexplicably rare among children, even in sub-Saharan Africa, which has the highest prevalence of coinfection with HIV and Cryptococcus neoformans. To explore any mycological basis for this age-related difference in the incidence of cryptococcosis, we investigated isolates of C. neoformans recovered from pediatric and adult patients during a 2-year period in South Africa. From reports to the Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMS-SA), we reviewed all cases of cryptococcosis in 2005 and 2006. We analyzed one isolate of C. neoformans from each of 82 pediatric patients (<15 years of age) and determined the multilocus sequence type (ST), mating type, ploidy, and allelic profile. This sample included isolates of all three molecular types of serotype A or C. neoformans var. grubii (molecular types VNI, VNII, and VNB) and one AD hybrid. Seventy-seven (94%) of the strains possessed the MATα mating type allele, and five were MATa. Seventy-five (91%) were haploid, and seven were diploid. A total of 24 different STs were identified. The ratios of each mating type and the proportion of haploids were comparable to those for the isolates that were obtained from 86 adult patients during the same period. Notably, the most prevalent pediatric ST was significantly associated with male patients. Overall, these pediatric isolates exhibited high genotypic diversity. They included a relatively large percentage of diploids and the rarely reported MATa mating type.Item Open Access Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck.(BMC cancer, 2011-06-20) Ma, Hongxia; Wang, Li-E; Liu, Zhensheng; Sturgis, Erich M; Wei, QingyiPhospholipase C epsilon 1 (PLCE1) (an effector of Ras) belonging to the phospholipase family plays crucial roles in carcinogenesis and progression of several cancers, including squamous cell carcinoma of the head and neck (SCCHN). A single nucleotide polymorphism (SNP, rs2274223) in PLCE1 has been identified as a novel susceptibility locus in genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) that share similar risk factors with SCCHN. Therefore, we investigated the association between potentially functional SNPs in PLCE1 and susceptibility to SCCHN.We genotyped three potentially functional SNPs (rs2274223A/G, rs3203713A/G and rs11599672T/G) of PLCE1 in 1,098 SCCHN patients and 1,090 controls matched by age and sex in a non-Hispanic white population.Although none of three SNPs was alone significantly associated with overall risk of SCCHN, their combined effects of risk alleles (rs2274223G, rs3203713G and rs11599672G) were found to be associated with risk of SCCHN in a locus-dose effect manner (Ptrend=0.046), particularly for non-oropharyngeal tumors (Ptrend=0.017); specifically, rs2274223 was associated with a significantly increased risk (AG vs. AA: adjusted OR=1.29, 95% CI=1.01-1.64; AG/GG vs. AA: adjusted OR=1.30, 95% CI=1.03-1.64), while rs11599672 was associated with a significantly decreased risk (GG vs. TT: adjusted OR=0.54, 95% CI=0.34-0.86; TG/GG vs. TT: adjusted OR=0.76, 95% CI=0.61-0.95).Our findings suggest that PLCE1 variants may have an effect on risk of SCCHN associated with tobacco and alcohol exposure, particularly for those tumors arising at non-oropharyngeal sites. These findings, although need to be validated by larger studies, are consistent with those in esophageal and gastric cancers.Item Open Access Association of tumor necrosis factor-alpha promoter variants with risk of HPV-associated oral squamous cell carcinoma.(Molecular cancer, 2013-07-19) Jin, Lei; Sturgis, Erich M; Zhang, Yang; Huang, Zhigang; Song, Xicheng; Li, Chao; Wei, Qingyi; Li, GuojunTumor necrosis factor alpha (TNF-α) plays an important role in inflammation, immunity, and defense against infection and clearance of human papillomavirus (HPV). Thus, genetic variants may modulate individual susceptibility to HPV-associated oral squamous cell carcinoma (OSCC).In this study we genotyped four common single nucleotide polymorphisms (SNPs) in the TNF-α promoter [ -308G > A(rs1800629), -857C > T (rs1799724), -863C > A (rs1800630), and -1031T > C (rs1799964)] and determined HPV16 serology in 325 OSCC cases and 335 matched controls and tumor HPV status in 176 squamous cell carcinomas of the oropharynx (SCCOP) patients. Univariate and multivariable logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs).We found that HPV16 seropositivity alone was associated with an increased risk of OSCC (OR, 3.1; 95% CI, 2.1-4.6), and such risk of HPV16-associated OSCC was modified by each SNP. Patients with both HPV16 seropositivity and variant genotypes for each SNP had the highest risk when using patients with HPV16 seronegativity and a wild-type genotype as a comparison group. Moreover, similar results were observed for the combined risk genotypes of four variants and all such significant associations were more pronounced in several subgroups, particularly in SCCOP patients and never smokers. Notably, the combined risk genotypes of four variants were also significantly associated with tumor HPV-positive SCCOP.Taken together, these results suggest that TNF-α SNPs may individually or, more likely, jointly affect individual susceptibility to HPV16-associated OSCC, particularly SCCOP and never smokers. Validation of our findings is warranted.Item Open Access Beta2-adrenergic receptor gene polymorphisms as systemic determinants of healthy aging in an evolutionary context.(Mech Ageing Dev, 2010-05) Kulminski, Alexander M; Culminskaya, Irina; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Land, Kenneth C; Yashin, Anatoli IThe Gln(27)Glu polymorphism but not the Arg(16)Gly polymorphism of the beta2-adrenergic receptor (ADRB2) gene appears to be associated with a broad range of aging-associated phenotypes, including cancers at different sites, myocardial infarction (MI), intermittent claudication (IC), and overall/healthy longevity in the Framingham Heart Study Offspring cohort. The Gln(27)Gln genotype increases risks of cancer, MI and IC, whereas the Glu(27) allele or, equivalently, the Gly(16)Glu(27) haplotype tends to be protective against these diseases. Genetic associations with longevity are of opposite nature at young-old and oldest-old ages highlighting the phenomenon of antagonistic pleiotropy. The mechanism of antagonistic pleiotropy is associated with an evolutionary-driven advantage of carriers of a derived Gln(27) allele at younger ages and their survival disadvantage at older ages as a result of increased risks of cancer, MI and IC. The ADRB2 gene can play an important systemic role in healthy aging in evolutionary context that warrants exploration in other populations.Item Open Access Birth Cohort, Age, and Sex Strongly Modulate Effects of Lipid Risk Alleles Identified in Genome-Wide Association Studies.(PLoS One, 2015) Kulminski, Alexander M; Culminskaya, Irina; Arbeev, Konstantin G; Arbeeva, Liubov; Ukraintseva, Svetlana V; Stallard, Eric; Wu, Deqing; Yashin, Anatoliy IInsights into genetic origin of diseases and related traits could substantially impact strategies for improving human health. The results of genome-wide association studies (GWAS) are often positioned as discoveries of unconditional risk alleles of complex health traits. We re-analyzed the associations of single nucleotide polymorphisms (SNPs) associated with total cholesterol (TC) in a large-scale GWAS meta-analysis. We focused on three generations of genotyped participants of the Framingham Heart Study (FHS). We show that the effects of all ten directly-genotyped SNPs were clustered in different FHS generations and/or birth cohorts in a sex-specific or sex-unspecific manner. The sample size and procedure-therapeutic issues play, at most, a minor role in this clustering. An important result was clustering of significant associations with the strongest effects in the youngest, or 3rd Generation, cohort. These results imply that an assumption of unconditional connections of these SNPs with TC is generally implausible and that a demographic perspective can substantially improve GWAS efficiency. The analyses of genetic effects in age-matched samples suggest a role of environmental and age-related mechanisms in the associations of different SNPs with TC. Analysis of the literature supports systemic roles for genes for these SNPs beyond those related to lipid metabolism. Our analyses reveal strong antagonistic effects of rs2479409 (the PCSK9 gene) that cautions strategies aimed at targeting this gene in the next generation of lipid drugs. Our results suggest that standard GWAS strategies need to be advanced in order to appropriately address the problem of genetic susceptibility to complex traits that is imperative for translation to health care.Item Open Access Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans.(PloS one, 2017-01) Yan, Qin; Ahn, Sun Hee; Medie, Felix Mba; Sharma-Kuinkel, Batu K; Park, Lawrence P; Scott, William K; Deshmukh, Hitesh; Tsalik, Ephraim L; Cyr, Derek D; Woods, Christopher W; Yu, Chen-Hsin Albert; Adams, Carlton; Qi, Robert; Hansen, Brenda; Fowler, Vance GWe previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780-88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus.Item Open Access CASP7 variants modify susceptibility to cervical cancer in Chinese women.(Scientific reports, 2015-01) Shi, Ting-Yan; He, Jing; Wang, Meng-Yun; Zhu, Mei-Ling; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Wu, Xiaohua; Cheng, Xi; Wei, QingyiPolymorphisms in Caspase-7 (CASP7) may modulate the programmed cell death and thus contribute to cervical cancer risk. In this case-control study of 1,486 cervical cancer cases and 1,301 controls, we investigated associations between four potentially functional polymorphisms in CASP7 and cervical cancer risk and evaluated their locus-locus interaction effects on the risk. The genotype-phenotype correlation was performed by a generalized linear regression model. We found that the rs4353229 polymorphism was associated with cervical cancer risk (under a recessive model: crude OR = 1.20, 95% CI = 1.02-1.40). Compared with the TT genotype, the rs10787498GT genotype was associated with an increased cervical cancer risk (adjusted OR = 1.19, 95% CI = 1.00-1.41). Combination analysis showed that subjects with four putative risk genotypes had a 1.54-fold increased cancer risk, compared with those who carried three or less putative risk genotypes. We also observed significant locus-locus joint effects on the risk, which may be mediated by the polymorphisms regulating CASP7 mRNA expression. Subsequent multifactor dimensionality reduction and classification and regression tree analyses indicated that the CASP7 genotypes might have a locus-locus interaction effect that modulated cervical cancer risk. Out data suggest that CASP7 polymorphisms may interact to modify cervical cancer risk by a possible mechanism of regulating CASP7 mRNA expression.Item Open Access Common genetic variation and the control of HIV-1 in humans.(PLoS Genet, 2009-12) Fellay, Jacques; Ge, Dongliang; Shianna, Kevin V; Colombo, Sara; Ledergerber, Bruno; Cirulli, Elizabeth T; Urban, Thomas J; Zhang, Kunlin; Gumbs, Curtis E; Smith, Jason P; Castagna, Antonella; Cozzi-Lepri, Alessandro; De Luca, Andrea; Easterbrook, Philippa; Günthard, Huldrych F; Mallal, Simon; Mussini, Cristina; Dalmau, Judith; Martinez-Picado, Javier; Miro, José M; Obel, Niels; Wolinsky, Steven M; Martinson, Jeremy J; Detels, Roger; Margolick, Joseph B; Jacobson, Lisa P; Descombes, Patrick; Antonarakis, Stylianos E; Beckmann, Jacques S; O'Brien, Stephen J; Letvin, Norman L; McMichael, Andrew J; Haynes, Barton F; Carrington, Mary; Feng, Sheng; Telenti, Amalio; Goldstein, David B; NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI)To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.Item Open Access Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana.(Mol Ecol, 2015-07) Chen, Yuan; Litvintseva, Anastasia P; Frazzitta, Aubrey E; Haverkamp, Miriam R; Wang, Liuyang; Fang, Charles; Muthoga, Charles; Mitchell, Thomas G; Perfect, John RCryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.Item Open Access Detecting local haplotype sharing and haplotype association.(Genetics, 2014-07) Xu, Hanli; Guan, YongtaoA novel haplotype association method is presented, and its power is demonstrated. Relying on a statistical model for linkage disequilibrium (LD), the method first infers ancestral haplotypes and their loadings at each marker for each individual. The loadings are then used to quantify local haplotype sharing between individuals at each marker. A statistical model was developed to link the local haplotype sharing and phenotypes to test for association. We devised a novel method to fit the LD model, reducing the complexity from putatively quadratic to linear (in the number of ancestral haplotypes). Therefore, the LD model can be fitted to all study samples simultaneously, and, consequently, our method is applicable to big data sets. Compared to existing haplotype association methods, our method integrated out phase uncertainty, avoided arbitrariness in specifying haplotypes, and had the same number of tests as the single-SNP analysis. We applied our method to data from the Wellcome Trust Case Control Consortium and discovered eight novel associations between seven gene regions and five disease phenotypes. Among these, GRIK4, which encodes a protein that belongs to the glutamate-gated ionic channel family, is strongly associated with both coronary artery disease and rheumatoid arthritis. A software package implementing methods described in this article is freely available at http://www.haplotype.org.Item Open Access Evaluation of genotype-specific survival using joint analysis of genetic and non-genetic subsamples of longitudinal data.(Biogerontology, 2011-04) Arbeev, Konstantin G; Ukraintseva, Svetlana V; Arbeeva, Liubov S; Akushevich, Igor; Kulminski, Alexander M; Yashin, Anatoliy ISmall sample size of genetic data is often a limiting factor for desirable accuracy of estimated genetic effects on age-specific risks and survival. Longitudinal non-genetic data containing information on survival or disease onsets of study participants for whom the genetic data were not collected may provide an additional "reserve" for increasing the accuracy of respective estimates. We present a novel method for joint analyses of "genetic" (covering individuals for whom both genetic information and mortality/morbidity data are available) and "non-genetic" (covering individuals for whom only mortality/morbidity data were collected) subsamples of longitudinal data. Our simulation studies show substantial increase in the accuracy of estimates in such joint analyses compared to analyses based on genetic subsample alone. Application of this method to analysis of the effect of common apolipoprotein E (APOE) polymorphism on survival using combined genetic and non-genetic subsamples of the Framingham Heart Study original cohort data showed that female, but not male, carriers of the APOE e4 allele have significantly worse survival than non-carriers, whereas empirical analyses did not produce any significant results for either sex.Item Open Access Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity.(Age (Dordr), 2013-04) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Suchiman, H Eka D; Jacobsen, Rune; McGue, Matt; Stevnsner, Tinna; Bohr, Vilhelm A; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; Christiansen, LeneIn this study, we investigated 102 single-nucleotide polymorphisms (SNPs) covering the common genetic variation in 16 genes recurrently regarded as candidates for human longevity: APOE; ACE; CETP; HFE; IL6; IL6R; MTHFR; TGFB1; APOA4; APOC3; SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. In a case-control study of 1,089 oldest-old (ages 92-93) and 736 middle-aged Danes, the minor allele frequency (MAF) of rs769449 (APOE) was significantly decreased in the oldest-old, while the MAF of rs9923854 (CETP) was significantly enriched. These effects were supported when investigating 1,613 oldest-old (ages 95-110) and 1,104 middle-aged Germans. rs769449 was in modest linkage equilibrium (R (2)=0.55) with rs429358 of the APOE-ε4 haplotype and adjusting for rs429358 eliminated the association of rs769449, indicating that the association likely reflects the well-known effect of rs429358. Gene-based analysis confirmed the effects of variation in APOE and CETP and furthermore pointed to HSPA14 as a longevity gene. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes, only one SNP, rs2069827 (IL6), was borderline significantly associated with survival from age 92 (P-corrected=0.064). This advantageous effect of the minor allele was supported when investigating a Dutch longitudinal cohort (N=563) of oldest-old (age 85+). Since rs2069827 was located in a putative transcription factor binding site, quantitative RNA expression studies were conducted. However, no difference in IL6 expression was observed between rs2069827 genotype groups. In conclusion, we here support and expand the evidence suggesting that genetic variation in APOE, CETP, and IL6, and possible HSPA14, is associated with human longevity.Item Open Access Evolutionary effects of contagious and familial transmission.(Proceedings of the National Academy of Sciences of the United States of America, 1979-01) Uyenoyama, M; Feldman, MW; Cavalli-Sforza, LLTwo models involving non-Mendelian transmission of a discrete valued trait through within- and across-generation contagion are proposed in an investigation of the joint evolution of phenotype and genotype. A single locus with two alleles determines susceptibility to contagion. The incorporation of within-generation contagious transmission extends the parameter ranges allowing phenotypic polymorphism and introduces a new phenotypic equilibrium configuration. The latter is characterized by a threshold in the initial value of the trait which determines whether the trait can increase. Phenotypic evolution is accelerated by within-generation contagion, but the rate of genetic evolution is retarded relative to that under uniparental transmission across generations. The second model studied allows the trait to be acquired, at genotype-dependent rates, even if the transmitting parent does not have the trait. Both the pattern of phenotypic transmission and the selection on the trait influence the course of evolution. Some important aspects of the structure of the one locus-two allele model are shown to be preserved with more alleles. At equilibrium, the leading eigenvalue of the transmission-selection matrix assumes the role of genotypic fitness.