Browsing by Subject "Alternative Splicing"
- Results Per Page
- Sort Options
Item Open Access A widespread length-dependent splicing dysregulation in cancer.(Science advances, 2022-08) Zhang, Sirui; Mao, Miaowei; Lv, Yuesheng; Yang, Yingqun; He, Weijing; Song, Yongmei; Wang, Yongbo; Yang, Yun; Al Abo, Muthana; Freedman, Jennifer A; Patierno, Steven R; Wang, Yang; Wang, ZefengDysregulation of alternative splicing is a key molecular hallmark of cancer. However, the common features and underlying mechanisms remain unclear. Here, we report an intriguing length-dependent splicing regulation in cancers. By systematically analyzing the transcriptome of thousands of cancer patients, we found that short exons are more likely to be mis-spliced and preferentially excluded in cancers. Compared to other exons, cancer-associated short exons (CASEs) are more conserved and likely to encode in-frame low-complexity peptides, with functional enrichment in GTPase regulators and cell adhesion. We developed a CASE-based panel as reliable cancer stratification markers and strong predictors for survival, which is clinically useful because the detection of short exon splicing is practical. Mechanistically, mis-splicing of CASEs is regulated by elevated transcription and alteration of certain RNA binding proteins in cancers. Our findings uncover a common feature of cancer-specific splicing dysregulation with important clinical implications in cancer diagnosis and therapies.Item Open Access Alternative splicing in multiple sclerosis and other autoimmune diseases.(RNA Biol, 2010-07) Evsyukova, Irina; Somarelli, Jason A; Gregory, Simon G; Garcia-Blanco, Mariano AAlternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between "self" and "non-self", and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy.Item Open Access Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.(Nature, 2002-12-05) Okazaki, Y; Furuno, M; Kasukawa, T; Adachi, J; Bono, H; Kondo, S; Nikaido, I; Osato, N; Osato, N; Saito, R; Suzuki, H; Yamanaka, I; Kiyosawa, H; Yagi, K; Tomaru, Y; Hasegawa, Y; Nogami, A; Schönbach, C; Gojobori, T; Baldarelli, R; Hill, DP; Bult, C; Hume, DA; Hume, DA; Quackenbush, J; Schriml, LM; Kanapin, A; Matsuda, H; Batalov, S; Beisel, KW; Blake, JA; Bradt, D; Brusic, V; Chothia, C; Corbani, LE; Cousins, S; Dalla, E; Dragani, TA; Fletcher, CF; Forrest, A; Frazer, KS; Gaasterland, T; Gariboldi, M; Gissi, C; Godzik, A; Gough, J; Grimmond, S; Gustincich, S; Hirokawa, N; Jackson, IJ; Jarvis, ED; Kanai, A; Kawaji, H; Kawasawa, Y; Kedzierski, RM; King, BL; Konagaya, A; Kurochkin, IV; Lee, Y; Lenhard, B; Lyons, PA; Maglott, DR; Maltais, L; Marchionni, L; McKenzie, L; Miki, H; Nagashima, T; Numata, K; Okido, T; Pavan, WJ; Pertea, G; Pesole, G; Petrovsky, N; Pillai, R; Pontius, JU; Qi, D; Ramachandran, S; Ravasi, T; Reed, JC; Reed, DJ; Reid, J; Ring, BZ; Ringwald, M; Sandelin, A; Schneider, C; Semple, CAM; Setou, M; Shimada, K; Sultana, R; Takenaka, Y; Taylor, MS; Teasdale, RD; Tomita, M; Verardo, R; Wagner, L; Wahlestedt, C; Wang, Y; Watanabe, Y; Wells, C; Wilming, LG; Wynshaw-Boris, A; Yanagisawa, M; Yang, I; Yang, L; Yuan, Z; Zavolan, M; Zhu, Y; Zimmer, A; Carninci, P; Hayatsu, N; Hirozane-Kishikawa, T; Konno, H; Nakamura, M; Sakazume, N; Sato, K; Shiraki, T; Waki, K; Kawai, J; Aizawa, K; Arakawa, T; Fukuda, S; Hara, A; Hashizume, W; Imotani, K; Ishii, Y; Itoh, M; Kagawa, I; Miyazaki, A; Sakai, K; Sasaki, D; Shibata, K; Shinagawa, A; Yasunishi, A; Yoshino, M; Waterston, R; Lander, ES; Rogers, J; Birney, E; Hayashizaki, Y; FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I & II TeamOnly a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.Item Open Access Detecting Changes in Alternative mRNA Processing From Microarray Expression Data(2010) Robinson, Timothy J.Alternative mRNA processing can result in the generation of multiple, qualitatively different RNA transcripts from the same gene and is a powerful engine of complexity in higher organisms. Recent deep sequencing studies have indicated that essentially all human genes containing more than a single exon generate multiple RNA transcripts. Functional roles of alternative processing have been established in virtually all areas of biological regulation, particularly in development and cancer. Changes in alternative mRNA processing can now be detected from over a billion dollars' worth of conventional gene expression microarray data archived over the past 20 years using a program we created called SplicerAV. Application of SplicerAV to publicly available microarray data has granted new insights into previously existing studies of oncogene over-expression and clinical cancer prognosis.
Adaptation of SplicerAV to the new Affymetrix Human Exon arrays has resulted in the creation of SplicerEX, the first program that can automatically categorize microarray detected changes in alternative processing into biologically pertinent categories. We use SplicerEX's automatic event categorization to identify changes in global mRNA processing during B cell transformation and show that the conventional U133 platform is able to detect 3' located changes in mRNA processing five times more frequently than the Human Exon array.
Item Open Access Differential expression of glutamate receptors in avian neural pathways for learned vocalization.(J Comp Neurol, 2004-08-09) Wada, Kazuhiro; Sakaguchi, Hironobu; Jarvis, Erich D; Hagiwara, MasatoshiLearned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds-parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas.Item Open Access Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study.(BMC Med Genet, 2010-01-19) Chiba-Falek, Ornit; Nichols, Marshall; Suchindran, Sunil; Guyton, John; Ginsburg, Geoffrey S; Barrett-Connor, Elizabeth; McCarthy, Jeanette JBACKGROUND: Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. METHODS: We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII) expression in 91 human liver tissues using quantitative real-time PCR. RESULTS: Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p=9.2x10(-4)) and triglycerides (p=1.3x10(-3)) and the triglyceride:HDL cholesterol ratio (p=2.7x10(-4)). These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women<45 years old (p=0.002). CONCLUSIONS: Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.Item Open Access Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.(Genome Res, 2012-10) Maxwell, Colin S; Antoshechkin, Igor; Kurhanewicz, Nicole; Belsky, Jason A; Baugh, L RyanNutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.Item Open Access Quantifying Gene Regulatory Networks(2014) Wang, Shangying\abstract
Transcription and translation describe the flow of genetic information from DNA to mRNA to protein. Recent studies show that at a single cell level, these processes are stochastic, which results in the variation of the number of mRNA and proteins even under identical environmental conditions. Because the number of mRNA and protein in each single cell are actually very small, these variations can be crucial for cellular function in diverse contexts, such as development, stress response, immunological and nervous system function. Most studies examine the origin and effects of stochastic gene expression using computer simulations. My goal is to develop a theoretical framework to study activity-dependent gene expression using simplified models that capture essential features.
I have examined the dynamics of stochastic gene regulation in three contexts. First, I examine how fluctuations in promoter accessibility lead to "bursty" transcription, during which genes are turned "on" or "off" stochastically. I describe a mathematical formalism to represent bursty gene expression in a coarse-grained manner as a Markov process and derive a master equation for the time evolution of the probability distribution of the number of mRNA molecules. This allows us to examine how transcript number responds to time varying stimuli. This model forms a basic building block for understanding the signal transmission and noise of the transcription process to time varying inputs as would be sensed by cells in dynamic environments. In addition to synthesis, gene expression is subject to additional modes of regulation. One such mechanism that controls transcript numbers is by microRNAs (miRNAs), which pair with target mRNAs to repress protein production following transcription. Although hundreds of miRNAs have been identified in mammalian genomes, the function of miRNA-based repression in the context of gene regulation networks still remains unclear. I explore the functional roles of feedback regulation by miRNAs and show that protein fluctuations strongly depend on the mode of miRNA-mediated repression. I discuss the functional implications of protein fluctuations arising from miRNA-mediated repression on gene regulatory networks. Finally, I examine the impact of fluctuations on alternative splicing, which is a major source for proteomic complexity in higher eukaryotes. Although the proteins regulating alternative splicing have been extensively studied, little is known about how noise arising from the stochastic nature of alternative splicing contributes to the entire gene expression process. I explore the functional roles and noise properties of alternative splicing, focusing on the case of exon skipping and intron retention. I show that while the overall counts of the mRNAs of the two isoforms are independent and Poisson distributed, diffusion and binding of the splicing factors contributes to the variance in the abundance of the isoforms.
Noise in gene expression may be of particular relevance in the nervous system. Environmental stimuli drive the rapid remodeling of neural circuitry in part by inducing the activation of genes to make proteins that modify neuronal excitability and connectivity, ultimately influencing higher order brain function. Finally, I examine the implications of our studies for activity dependent gene expression in the nervous system.
Item Open Access SplicerEX: a tool for the automated detection and classification of mRNA changes from conventional and splice-sensitive microarray expression data.(RNA (New York, N.Y.), 2012-08) Robinson, Timothy J; Forte, Eleonora; Salinas, Raul E; Puri, Shaan; Marengo, Matthew; Garcia-Blanco, Mariano A; Luftig, Micah AThe key postulate that one gene encodes one protein has been overhauled with the discovery that one gene can generate multiple RNA transcripts through alternative mRNA processing. In this study, we describe SplicerEX, a novel and uniquely motivated algorithm designed for experimental biologists that (1) detects widespread changes in mRNA isoforms from both conventional and splice sensitive microarray data, (2) automatically categorizes mechanistic changes in mRNA processing, and (3) mitigates known technological artifacts of exon array-based detection of alternative splicing resulting from 5' and 3' signal attenuation, background detection limits, and saturation of probe set signal intensity. In this study, we used SplicerEX to compare conventional and exon-based Affymetrix microarray data in a model of EBV transformation of primary human B cells. We demonstrated superior detection of 3'-located changes in mRNA processing by the Affymetrix U133 GeneChip relative to the Human Exon Array. SplicerEX-identified exon-level changes in the EBV infection model were confirmed by RT-PCR and revealed a novel set of EBV-regulated mRNA isoform changes in caspases 6, 7, and 8. Finally, SplicerEX as compared with MiDAS analysis of publicly available microarray data provided more efficiently categorized mRNA isoform changes with a significantly higher proportion of hits supported by previously annotated alternative processing events. Therefore, SplicerEX provides an important tool for the biologist interested in studying changes in mRNA isoform usage from conventional or splice-sensitive microarray platforms, especially considering the expansive amount of archival microarray data generated over the past decade. SplicerEX is freely available upon request.