Browsing by Subject "Amination"
Results Per Page
Sort Options
Item Open Access Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C-H amination reactions.(J Am Chem Soc, 2014-04-16) Bess, Elizabeth N; DeLuca, Ryan J; Tindall, Daniel J; Oderinde, Martins S; Roizen, Jennifer L; Du Bois, J; Sigman, Matthew SPredicting site selectivity in C-H bond oxidation reactions involving heteroatom transfer is challenged by the small energetic differences between disparate bond types and the subtle interplay of steric and electronic effects that influence reactivity. Herein, the factors governing selective Rh2(esp)2-catalyzed C-H amination of isoamylbenzene derivatives are investigated, where modification to both the nitrogen source, a sulfamate ester, and substrate are shown to impact isomeric product ratios. Linear regression mathematical modeling is used to define a relationship that equates both IR stretching parameters and Hammett σ(+) values to the differential free energy of benzylic versus tertiary C-H amination. This model has informed the development of a novel sulfamate ester, which affords the highest benzylic-to-tertiary site selectivity (9.5:1) observed for this system.Item Open Access Copper-Catalyzed Amino Oxygenation of Alkenes and Dienes: A Novel Amino-Initiation Pathway Using O-Benzoylhydroxylamines(2018) Hemric, Brett NathanielNitrogen-containing compounds, specifically the 1,2-oxyamino moiety, are of vital importance to modern pharmaceuticals, natural products, and agrochemicals. 1,2-Difunctionalization of alkenes offers an efficient approach to assemble these scaffolds in a single step from readily available starting materials. In this dissertation, a novel copper-catalyzed amino oxygenation strategy of alkenes has been established using O-benzoylhydroxylamines as an electron-rich amine precursor and oxidant. First, copper-catalyzed amino lactonization was achieved starting with carboxylic acid-tethered alkenes. This intramolecular transformation is also applicable to alcohols, amides, 1,3-diones, oximes, and thioic acids as nucleophilic trapping partners. These reactions proceed in a facile manner, producing good yields and tolerance of a wide range of functional groups with excellent chemo- and regioselectivity. Mechanistic studies explicitly distinguish between a novel, electrophilic amination-initiation event and previously observed nucleophilic oxygenation-initiation events. Furthermore, the procedure can be adapted to carry out the reaction from the free amine as an O-benzoylhydroxylamine precursor. Finally, the intermolecular, three-component amino oxygenation reaction of alkenes was successfully developed using untethered carboxylic acids and O-benzoylhydroxylamines. The analogous three-component amino oxygenation reaction of dienes was also found to proceed effectively in a chemo-, regio-, and site-selective fashion.
Item Open Access Nitrogen–Heteroatom Bond Enabled Synthesis of Pharmacologically Valuable Aminoarenes via Aryne and Aryl-Zinc Intermediates(2017) Hendrick, Charles EdwardAminoarenes are common structural features in pharmaceuticals and biologically relevant scaffolds, motivating continued development of strategies to facilitate their synthesis. Canonical approaches to aryl amination rely upon nucleophilic N–H bond precursors. Nitrogen–heteroatom bonds possess versatile reactivity and can enable synthetically attractive approaches to functionalized aminoarenes. Towards this, we proposed the use of nitrogen–heteroatom bonds in both bond insertion by reactive aryne intermediates and as electrophilic amination reagents in the net C–H amination of arenes via zinc-amide mediated H–Zn exchange.
Herein, we describe the development of nitrogen–heteroatom bond enabled strategies to access functionally diverse aminoarene products. Aryne insertion of N-chloro, -bromo, and even -iodoamines was achieved in moderate yields and excellent regioselectivity to provide direct access to ortho-haloaminoarene motifs. This approach employs ortho-trimethylsilyl aryltriflates and simple fluoride salts as a mild platform for in situ formation of reactive arynes, affording functionally complex aminoarene products in a single transformation. Access to aminoarenes from ubiquitous heteroaryl and aryl C–H bonds was also achieved via copper-catalyzed electrophilic amination with O-benzoylhydroxylamines, mediated by initial H–Zn exchange from highly hindered amide-zinc complexes. In addition to well-established Zn(TMP)2 and Zn(TMP)Cl•LiCl, we developed LiTMP0.1Li[ZnEt2(TMP)] as part of a general ortho-directed C–H zincation/amination strategy. Using O-benzoylhydroxylamines and a copper catalyst to affect electrophilic amination, this zincate base permitted access to a broad scope of heteroarene and arene substrates with varied ortho-directing group functionalities. The improved access to aminoarene products enabled by these methods was then demonstrated through the study of functionally selective dopamine receptor ligands, which yielded valuable information on the complex SAR and SFSR of D2 and D3 receptors and their signaling pathways.
The successful development of strategies to access highly functionalized aminoarene scaffolds provides valuable tools for drug discovery. The methods presented here expand access to diverse aryl amine motifs and will contribute to the development of novel small molecule biochemical tools and therapeutics.
Item Open Access Platinum(II)-catalyzed intermolecular hydroamination of monosubstituted allenes with secondary alkylamines.(Chem Commun (Camb), 2010-03-14) Toups, Kristina L; Widenhoefer, Ross AA 1:1 mixture of (dppf)PtCl(2) and AgOTf (5 mol%) catalyzed the intermolecular hydroamination of monosubstituted allenes with secondary alkylamines at 80 degrees C to form allylic amines in good yield with selective formation of the E-diastereomer.