Browsing by Subject "Amino Acid Sequence"
Now showing 1 - 20 of 75
Results Per Page
Sort Options
Item Open Access A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.(Proc Natl Acad Sci U S A, 1998-07-21) Hall, RA; Ostedgaard, LS; Premont, RT; Blitzer, JT; Rahman, N; Welsh, MJ; Lefkowitz, RJThe Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.Item Open Access A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated.(Proc Natl Acad Sci U S A, 1994-03-29) Pei, G; Samama, P; Lohse, M; Wang, M; Codina, J; Lefkowitz, RJThe beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.Item Open Access A kinesin motor in a force-producing conformation.(BMC Struct Biol, 2010-07-05) Heuston, Elisabeth; Bronner, C Eric; Kull, F Jon; Endow, Sharyn ABACKGROUND: Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states. RESULTS: Here we show that mutation of a single residue in the kinesin-14 Ncd causes the motor to release ADP and hydrolyze ATP faster than wild type, but move more slowly along microtubules in gliding assays, uncoupling nucleotide hydrolysis from force generation. A crystal structure of the motor shows a large rotation of the stalk, a conformation representing a force-producing stroke of Ncd. Three C-terminal residues of Ncd, visible for the first time, interact with the central beta-sheet and dock onto the motor core, forming a structure resembling the kinesin-1 neck linker, which has been proposed to be the primary force-generating mechanical element of kinesin-1. CONCLUSIONS: Force generation by minus-end Ncd involves docking of the C-terminus, which forms a structure resembling the kinesin-1 neck linker. The mechanism by which the plus- and minus-end motors produce force to move to opposite ends of the microtubule appears to involve the same conformational changes, but distinct structural linkers. Unstable ADP binding may destabilize the motor-ADP state, triggering Ncd stalk rotation and C-terminus docking, producing a working stroke of the motor.Item Open Access A Lysine Residue Essential for Geminivirus Replication Also Controls Nuclear Localization of the Tomato Yellow Leaf Curl Virus Rep Protein.(Journal of virology, 2019-05) Maio, Francesca; Arroyo-Mateos, Manuel; Bobay, Benjamin G; Bejarano, Eduardo R; Prins, Marcel; van den Burg, Harrold AGeminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.Item Open Access A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels.(Nature, 2008-02-14) Dick, Ivy E; Tadross, Michael R; Liang, Haoya; Tay, Lai Hock; Yang, Wanjun; Yue, David TCa2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.Item Open Access A novel human endogenous retroviral protein inhibits cell-cell fusion.(Scientific reports, 2013-01) Sugimoto, Jun; Sugimoto, Makiko; Bernstein, Helene; Jinno, Yoshihiro; Schust, DannyWhile common in viral infections and neoplasia, spontaneous cell-cell fusion, or syncytialization, is quite restricted in healthy tissues. Such fusion is essential to human placental development, where interactions between trophoblast-specific human endogenous retroviral (HERV) envelope proteins, called syncytins, and their widely-distributed cell surface receptors are centrally involved. We have identified the first host cell-encoded protein that inhibits cell fusion in mammals. Like the syncytins, this protein, called suppressyn, is HERV-derived, placenta-specific and well-conserved over simian evolution. In vitro, suppressyn binds to the syn1 receptor and inhibits syn1-, but not syn2-mediated trophoblast syncytialization. Suppressyn knock-down promotes cell-cell fusion in trophoblast cells and cell-associated and secreted suppressyn binds to the syn1 receptor, ASCT2. Identification of the first host cell-encoded inhibitor of mammalian cell fusion may encourage improved understanding of cell fusion mechanisms, of placental morphogenesis and of diseases resulting from abnormal cell fusion.Item Open Access A Peptide Uncoupling BDNF Receptor TrkB from Phospholipase Cγ1 Prevents Epilepsy Induced by Status Epilepticus.(Neuron, 2015-11-04) Gu, Bin; Huang, Yang Zhong; He, Xiao-Ping; Joshi, Rasesh B; Jang, Wonjo; McNamara, James OThe BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE. Our studies of a mouse model reveal that phospholipase Cγ1 (PLCγ1) is the dominant signaling effector by which excessive activation of TrkB promotes epilepsy. We designed a novel peptide (pY816) that uncouples TrkB from PLCγ1. Treatment with pY816 following status epilepticus inhibited TLE and prevented anxiety-like disorder yet preserved neuroprotective effects of endogenous TrkB signaling. We provide proof-of-concept evidence for a novel strategy targeting receptor tyrosine signaling and identify a therapeutic with promise for prevention of TLE caused by status epilepticus in humans.Item Open Access Adrenergic receptors. Models for regulation of signal transduction processes.(Hypertension, 1990-02) Raymond, JR; Hnatowich, M; Lefkowitz, RJ; Caron, MGAdrenergic receptors are prototypic models for the study of the relations between structure and function of G protein-coupled receptors. Each receptor is encoded by a distinct gene. These receptors are integral membrane proteins with several striking structural features. They consist of a single subunit containing seven stretches of 20-28 hydrophobic amino acids that represent potential membrane-spanning alpha-helixes. Many of these receptors share considerable amino acid sequence homology, particularly in the transmembrane domains. All of these macromolecules share other similarities that include one or more potential sites of extracellular N-linked glycosylation near the amino terminus and several potential sites of regulatory phosphorylation that are located intracellularly. By using a variety of techniques, it has been demonstrated that various regions of the receptor molecules are critical for different receptor functions. The seven transmembrane regions of the receptors appear to form a ligand-binding pocket. Cysteine residues in the extracellular domains may stabilize the ligand-binding pocket by participating in disulfide bonds. The cytoplasmic domains contain regions capable of interacting with G proteins and various kinases and are therefore important in such processes as signal transduction, receptor-G protein coupling, receptor sequestration, and down-regulation. Finally, regions of these macromolecules may undergo posttranslational modifications important in the regulation of receptor function. Our understanding of these complex relations is constantly evolving and much work remains to be done. Greater understanding of the basic mechanisms involved in G protein-coupled, receptor-mediated signal transduction may provide leads into the nature of certain pathophysiological states.Item Open Access An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection.(PLoS One, 2013) Tobin, David M; Roca, Francisco J; Ray, John P; Ko, Dennis C; Ramakrishnan, LalitaWhile tuberculosis susceptibility has historically been ascribed to failed inflammation, it is now known that an excess of leukotriene A4 hydrolase (LTA4H), which catalyzes the final step in leukotriene B4 (LTB4) synthesis, produces a hyperinflammatory state and tuberculosis susceptibility. Here we show that the LTB4-inactivating enzyme leukotriene B4 dehydrogenase/prostaglandin reductase 1 (LTB4DH/PTGR1) restricts inflammation and independently confers resistance to tuberculous infection. LTB4DH overexpression counters the susceptibility resulting from LTA4H excess while ltb4dh-deficient animals can be rescued pharmacologically by LTB4 receptor antagonists. These data place LTB4DH as a key modulator of TB susceptibility and suggest new tuberculosis therapeutic strategies.Item Open Access An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis.(Cell host & microbe, 2020-03) Kim, Arthur S; Zimmerman, Ofer; Fox, Julie M; Nelson, Christopher A; Basore, Katherine; Zhang, Rong; Durnell, Lorellin; Desai, Chandni; Bullock, Christopher; Deem, Sharon L; Oppenheimer, Jonas; Shapiro, Beth; Wang, Ting; Cherry, Sara; Coyne, Carolyn B; Handley, Scott A; Landis, Michael J; Fremont, Daved H; Diamond, Michael SAlphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.Item Open Access Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.(PLoS One, 2010-01-20) Corti, Davide; Langedijk, Johannes PM; Hinz, Andreas; Seaman, Michael S; Vanzetta, Fabrizia; Fernandez-Rodriguez, Blanca M; Silacci, Chiara; Pinna, Debora; Jarrossay, David; Balla-Jhagjhoorsingh, Sunita; Willems, Betty; Zekveld, Maria J; Dreja, Hanna; O'Sullivan, Eithne; Pade, Corinna; Orkin, Chloe; Jeffs, Simon A; Montefiori, David C; Davis, David; Weissenhorn, Winfried; McKnight, Aine; Heeney, Jonathan L; Sallusto, Federica; Sattentau, Quentin J; Weiss, Robin A; Lanzavecchia, AntonioBACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.Item Open Access Analysis of the mouse transcriptome for genes involved in the function of the nervous system.(Genome Res, 2003-06) Gustincich, Stefano; Batalov, Serge; Beisel, Kirk W; Bono, Hidemasa; Carninci, Piero; Fletcher, Colin F; Grimmond, Sean; Hirokawa, Nobutaka; Jarvis, Erich D; Jegla, Tim; Kawasawa, Yuka; LeMieux, Julianna; Miki, Harukata; Raviola, Elio; Teasdale, Rohan D; Tominaga, Naoko; Yagi, Ken; Zimmer, Andreas; Hayashizaki, Yoshihide; Okazaki, Yasushi; RIKEN GER Group; GSL MembersWe analyzed the mouse Representative Transcript and Protein Set for molecules involved in brain function. We found full-length cDNAs of many known brain genes and discovered new members of known brain gene families, including Family 3 G-protein coupled receptors, voltage-gated channels, and connexins. We also identified previously unknown candidates for secreted neuroactive molecules. The existence of a large number of unique brain ESTs suggests an additional molecular complexity that remains to be explored.A list of genes containing CAG stretches in the coding region represents a first step in the potential identification of candidates for hereditary neurological disorders.Item Open Access Barnacle cement: a polymerization model based on evolutionary concepts.(2009-11) Dickinson, Gary H.The tenacity by which barnacles adhere has sparked a long history of scientific investigation into their adhesive mechanisms. To adhere, barnacles utilize proteinaceous cement that rapidly polymerizes and forms adhesive bonds underwater, and is insoluble once polymerized. Although progress has been made towards understanding the chemical properties of cement proteins, the biochemical mechanisms of cement polymerization remain largely unknown. In this dissertation, I used evolutionary concepts to elucidate barnacle cement polymerization. Well-studied biological phenomena (blood coagulation in vertebrates and invertebrates) were used as models to generate hypotheses on proteins/biochemical mechanisms involved in cement polymerization. These model systems are under similar selective pressures to cement polymerization (life or death situations) and show similar chemical characteristics (soluble protein that quickly/efficiently coagulates). I describe a novel method for collection of unpolymerized cement. Multiple, independent techniques (AFM, FTIR, chemical staining for peroxidase and tandem mass spectroscopy) support the validity of the collection technique. Identification of a large number of proteins besides ‘barnacle cement proteins’ with mass spectrometry, andobservations of hemocytes in unpolymerized cement inspired the hypothesis that barnacle cement is hemolymph. A striking biochemical resemblance was shown between barnacle cement polymerization and vertebrate blood coagulation. Clotted fibrin and polymerized cement were shown to be structurally similar (mesh of fibrous protein) but biochemically distinct. Heparin, trypsin inhibitor and Ca2+ chelators impeded cement polymerization, suggesting trypsin and Ca2+ involvement in polymerization. The presence/activity of a cement trypsin-like serine protease was verified and shown homologous to bovine pancreatic trypsin. Protease activity may activate cement structural precursors, allowing loose assembly with other structural proteins and surface rearrangement. Tandem mass spectrometry and Western blotting revealed a homologous protein to human coagulation factor XIII (fibrin stabilizing factor: transglutaminase that covalently cross-links fibrin monomers). Transglutaminase activity was verified and may covalently cross-link assembled cement monomers. Similar to other protein coagulation systems, heritable defects occur during cement polymerization. High plasma protein concentration combined with sub-optimal enzyme, and/or cofactor concentrations and sub-optimal physical/muscular parameters (associated with hemolymph release) results in improperly cured cement in certain individuals when polymerization occurs in contact with low surface energy silicone and its associated leached molecules.Item Restricted beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein.(Proc Natl Acad Sci U S A, 1998-11-24) Premont, RT; Claing, A; Vitale, N; Freeman, JL; Pitcher, JA; Patton, WA; Moss, J; Vaughan, M; Lefkowitz, RJG protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.Item Open Access Binding site on human immunoglobulin G for the affinity ligand HWRGWV.(Journal of molecular recognition : JMR, 2010-05) Yang, Haiou; Gurgel, Patrick V; Williams, D Keith; Bobay, Benjamin G; Cavanagh, John; Muddiman, David C; Carbonell, Ruben GAffinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383-Asn389 (SNGQPEN) located in the C(H)3 domain. Subsequent modeling has suggested a possible three-dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG.Item Open Access cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor.(Proc Natl Acad Sci U S A, 1987-01) Kobilka, BK; Dixon, RA; Frielle, T; Dohlman, HG; Bolanowski, MA; Sigal, IS; Yang-Feng, TL; Francke, U; Caron, MG; Lefkowitz, RJWe have isolated and sequenced a cDNA encoding the human beta 2-adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster beta 2-adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. We have localized the gene for the beta 2-adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor.Item Open Access Characterization of the murine BEK fibroblast growth factor (FGF) receptor: activation by three members of the FGF family and requirement for heparin.(Proc Natl Acad Sci U S A, 1992-04-15) Mansukhani, A; Dell'Era, P; Moscatelli, D; Kornbluth, S; Hanafusa, H; Basilico, CThe bek gene encodes a member of the high-affinity fibroblast growth factor receptor family. The BEK/FGFR-2 receptor is a membrane-spanning tyrosine kinase with the typical features of FGF receptors. We have cloned a murine bek cDNA and expressed it in receptor-negative Chinese hamster ovary cells and in 32D myeloid cells. The BEK receptor expressed in Chinese hamster ovary cells binds acidic FGF, basic FGF, and Kaposi FGF equally well but does not bind keratinocyte growth factor or FGF-5 appreciably. Upon treatment with basic FGF or Kaposi FGF, the BEK receptor is phosphorylated and a mitogenic response is achieved. Heparan sulfate proteoglycans have been shown to play an obligate role in basic FGF binding to the high-affinity FLG receptor. Unlike the BEK-expressing Chinese hamster ovary cells, 32D cells expressing the BEK receptor require the addition of exogenous heparin in order to grow in the presence of basic FGF or Kaposi FGF. We show that the addition of heparin greatly enhances the binding of radio-labeled basic FGF to the receptor. Thus the BEK receptor, like FLG, also requires an interaction with heparan sulfate proteoglycans to facilitate binding to its ligands.Item Open Access Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype.(Proc Natl Acad Sci U S A, 1988-09) Regan, JW; Kobilka, TS; Yang-Feng, TL; Caron, MG; Lefkowitz, RJ; Kobilka, BKAn alpha 2-adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet alpha 2-adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet alpha 2-adrenergic receptor and is consistent with the structure of other members of the family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the alpha 2-adrenergic ligand [3H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the alpha 2B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet alpha 2-adrenergic receptor (alpha 2A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective alpha-adrenergic ligands.Item Open Access Cloning of the cDNA for the human beta 1-adrenergic receptor.(Proc Natl Acad Sci U S A, 1987-11) Frielle, T; Collins, S; Daniel, KW; Caron, MG; Lefkowitz, RJ; Kobilka, BKScreening of a human placenta lambda gt11 library has led to the isolation of the cDNA for the human beta 1-adrenergic receptor (beta 1AR). Used as the probe was the human genomic clone termed G-21. This clone, which contains an intronless gene for a putative receptor, was previously isolated by virtue of its cross hybridization with the human beta 2-adrenergic receptor (beta 2AR). The 2.4-kilobase cDNA for the human beta 1AR encodes a protein of 477 amino acid residues that is 69% homologous with the avian beta AR but only 54% homologous with the human beta 2AR. This suggests that the avian gene encoding beta AR and the human gene encoding beta 1AR evolved from a common ancestral gene. RNA blot analysis indicates a message of 2.5 kilobases in rat tissues, with a pattern of tissue distribution consistent with beta 1AR binding. This pattern is quite distinct from the pattern obtained when the beta 2AR cDNA is used as a probe. Expression of receptor protein in Xenopus laevis oocytes conveys adenylate cyclase responsiveness to catecholamines with a typical beta 1AR specificity. This contrasts with the typical beta 2 subtype specificity observed when the human beta 2AR cDNA is expressed in this system. Mammalian beta 1AR and beta 2AR are thus products of distinct genes, both of which are apparently related to the putative G-21 receptor.Item Open Access Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.(Nature, 2013-04-25) Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S Munir; Boyd, Scott D; Fire, Andrew Z; Roskin, Krishna M; Schramm, Chaim A; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; NISC Comparative Sequencing Program; Mullikin, James C; Gnanakaran, S; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C; Parks, Robert; Lloyd, Krissey E; Scearce, Richard M; Soderberg, Kelly A; Cohen, Myron; Kamanga, Gift; Louder, Mark K; Tran, Lillian M; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, M Gordon; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M; Hahn, Beatrice H; Kepler, Thomas B; Korber, Bette TM; Kwong, Peter D; Mascola, John R; Haynes, Barton FCurrent human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.