Browsing by Subject "Anammox"
Results Per Page
Sort Options
Item Open Access A Novel Integrated Biotrickling Filter -Anammox Bioreactor System for the Complete Treatment of Ammonia in Air with Nitrification and Denitrification(2020) Tang, LizhanAn integrated biotrickling filter (BTF)-Anammox bioreactor system was established for the complete treatment of ammonia. Shortcut nitrification process was successfully achieved in the biotrickling filter through free ammonia and free nitrous acid inhibition of nitrite oxidizing bacteria. During transients, while increasing nitrogen loading, free ammonia was the main factor that inhibited the activity of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). During steady state operation, free nitrous acid was mainly responsible for inhibition of NOB due to the accumulation of nitrite at relatively low pH. Ammonia removal by the BTF reached up to 50 gN m-3 h-1 with 100% removal at an inlet concentration of 403 ppm and a gas residence time of 20.8 s. Average removal of ammonia during stable operation was 95%. The anammox bioreactor could remove 75% of total nitrogen discharged by the BTF when the two reactors were connected. The possibility of operating in complete closed loop mode for the liquid was investigated. However, due to the limited activity of the Anammox bioreactor or the fact that this reactor was undersized, recycling the Anammox effluent back to BTF caused accumulation of nitrite in the system which further inhibited activity of Anammox and progressively caused failure of the system.
A conceptual model of both bioreactors was also developed to optimize the integrated system. The model was developed by including mass balances of nitrogen in the system and inhibition factors in microbial kinetics. Parameters such as hydraulic residence time (HRT), empty bed residence time (EBRT) and pH had significant impact on the partial nitritation process in the BTF. Model simulations also indicated that implementing a recycle for the Anammox bioreactor was needed to reduce the inhibitory effect of nitrite on the performance of the system.
Item Open Access Ammonia Gas Removal Using a Biotrickling Filter Coupled with an Anammox Reactor(2018) Frei, LaurenAmmonia is an odorous gaseous compound emitted by a variety of industrial facilities. This study aimed to address the feasibility of ammonia gas removal using a biotrickling filter (BTF) coupled with an anammox bioreactor. In the BTF, the influent ammonia gas partitioned into the trickling water and was converted to nitrite via partial nitrification. The effluent liquid from the BTF, containing nitrite and ammonium concentrations, was fed into the anammox reactor where autotrophic denitrifying bacteria converted the ammonium and nitrite to dinitrogen gas. For the anammox reactor to operate efficiently, the influent ammonium and nitrite concentrations must be in a 1 to 1 molar ratio. To evaluate the feasibility of this system, a lab scale BTF and anammox reactor were constructed and operated and a conceptual model for this system was developed. To obtain a nitrite to ammonium ratio close to 1, it was found that the effluent pH from the BTF must be maintained below 7, and the loading rate could not exceed 8.7 g N/m3h. At this loading rate, complete ammonia gas removal occurred. A recycle rate of 1.4 times that of the influent was implemented in the BTF to increase performance and improve the nitrite to ammonium ratio. The addition of the recycle line achieved a nitrite of ammonium ratio of 0.97 at a pH value of 7.67. The anammox reactor achieved 88% removal of ammonium and nitrite at a loading rate of 10.5 g N /m3h. The fact that the BTF was able to achieve a 1 to 1 nitrite to ammonium ratio indicated that coupling of a BTF with the anammox reactor should be feasible. The mathematical model underpredicted effluent ammonium and nitrite concentrations in the BTF and greatly overpredicted the effluent concentrations from the anammox reactor. To improve the BTF model inhibition factors and oxygen supply need to be accounted for. Further development of the growth kinetics in the annamox model are necessary as well.