Browsing by Subject "Anatomy, Comparative"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A new fully automated approach for aligning and comparing shapes.(Anatomical record (Hoboken, N.J. : 2007), 2015-01) Boyer, Doug M; Puente, Jesus; Gladman, Justin T; Glynn, Chris; Mukherjee, Sayan; Yapuncich, Gabriel S; Daubechies, IngridThree-dimensional geometric morphometric (3DGM) methods for placing landmarks on digitized bones have become increasingly sophisticated in the last 20 years, including greater degrees of automation. One aspect shared by all 3DGM methods is that the researcher must designate initial landmarks. Thus, researcher interpretations of homology and correspondence are required for and influence representations of shape. We present an algorithm allowing fully automatic placement of correspondence points on samples of 3D digital models representing bones of different individuals/species, which can then be input into standard 3DGM software and analyzed with dimension reduction techniques. We test this algorithm against several samples, primarily a dataset of 106 primate calcanei represented by 1,024 correspondence points per bone. Results of our automated analysis of these samples are compared to a published study using a traditional 3DGM approach with 27 landmarks on each bone. Data were analyzed with morphologika(2.5) and PAST. Our analyses returned strong correlations between principal component scores, similar variance partitioning among components, and similarities between the shape spaces generated by the automatic and traditional methods. While cluster analyses of both automatically generated and traditional datasets produced broadly similar patterns, there were also differences. Overall these results suggest to us that automatic quantifications can lead to shape spaces that are as meaningful as those based on observer landmarks, thereby presenting potential to save time in data collection, increase completeness of morphological quantification, eliminate observer error, and allow comparisons of shape diversity between different types of bones. We provide an R package for implementing this analysis.Item Open Access Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins.(Proceedings of the National Academy of Sciences of the United States of America, 2018-04-02) Kozma, Elaine E; Webb, Nicole M; Harcourt-Smith, William EH; Raichlen, David A; D'Août, Kristiaan; Brown, Mary H; Finestone, Emma M; Ross, Stephen R; Aerts, Peter; Pontzer, HermanThe evolutionary emergence of humans' remarkably economical walking gait remains a focus of research and debate, but experimentally validated approaches linking locomotor capability to postcranial anatomy are limited. In this study, we integrated 3D morphometrics of hominoid pelvic shape with experimental measurements of hip kinematics and kinetics during walking and climbing, hamstring activity, and passive range of hip extension in humans, apes, and other primates to assess arboreal-terrestrial trade-offs in ischium morphology among living taxa. We show that hamstring-powered hip extension during habitual walking and climbing in living apes and humans is strongly predicted, and likely constrained, by the relative length and orientation of the ischium. Ape pelves permit greater extensor moments at the hip, enhancing climbing capability, but limit their range of hip extension, resulting in a crouched gait. Human pelves reduce hip extensor moments but permit a greater degree of hip extension, which greatly improves walking economy (i.e., distance traveled/energy consumed). Applying these results to fossil pelves suggests that early hominins differed from both humans and extant apes in having an economical walking gait without sacrificing climbing capability. Ardipithecus was capable of nearly human-like hip extension during bipedal walking, but retained the capacity for powerful, ape-like hip extension during vertical climbing. Hip extension capability was essentially human-like in Australopithecus afarensis and Australopithecus africanus, suggesting an economical walking gait but reduced mechanical advantage for powered hip extension during climbing.Item Open Access Moving the mountain: analysis of the effort required to transform comparative anatomy into computable anatomy.(Database : the journal of biological databases and curation, 2015-01) Dahdul, Wasila; Dececchi, T Alexander; Ibrahim, Nizar; Lapp, Hilmar; Mabee, PaulaThe diverse phenotypes of living organisms have been described for centuries, and though they may be digitized, they are not readily available in a computable form. Using over 100 morphological studies, the Phenoscape project has demonstrated that by annotating characters with community ontology terms, links between novel species anatomy and the genes that may underlie them can be made. But given the enormity of the legacy literature, how can this largely unexploited wealth of descriptive data be rendered amenable to large-scale computation? To identify the bottlenecks, we quantified the time involved in the major aspects of phenotype curation as we annotated characters from the vertebrate phylogenetic systematics literature. This involves attaching fully computable logical expressions consisting of ontology terms to the descriptions in character-by-taxon matrices. The workflow consists of: (i) data preparation, (ii) phenotype annotation, (iii) ontology development and (iv) curation team discussions and software development feedback. Our results showed that the completion of this work required two person-years by a team of two post-docs, a lead data curator, and students. Manual data preparation required close to 13% of the effort. This part in particular could be reduced substantially with better community data practices, such as depositing fully populated matrices in public repositories. Phenotype annotation required ∼40% of the effort. We are working to make this more efficient with Natural Language Processing tools. Ontology development (40%), however, remains a highly manual task requiring domain (anatomical) expertise and use of specialized software. The large overhead required for data preparation and ontology development contributed to a low annotation rate of approximately two characters per hour, compared with 14 characters per hour when activity was restricted to character annotation. Unlocking the potential of the vast stores of morphological descriptions requires better tools for efficiently processing natural language, and better community practices towards a born-digital morphology. Database URL: http://kb.phenoscape.orgItem Open Access NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species.(Brain Behav Evol, 2014) Striedter, Georg F; Belgard, T Grant; Chen, Chun-Chun; Davis, Fred P; Finlay, Barbara L; Güntürkün, Onur; Hale, Melina E; Harris, Julie A; Hecht, Erin E; Hof, Patrick R; Hofmann, Hans A; Holland, Linda Z; Iwaniuk, Andrew N; Jarvis, Erich D; Karten, Harvey J; Katz, Paul S; Kristan, William B; Macagno, Eduardo R; Mitra, Partha P; Moroz, Leonid L; Preuss, Todd M; Ragsdale, Clifton W; Sherwood, Chet C; Stevens, Charles F; Stüttgen, Maik C; Tsumoto, Tadaharu; Wilczynski, WalterEfforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.