Browsing by Subject "Aneuploidy"
Results Per Page
Sort Options
Item Open Access Exploring the functional consequences of whole-genome duplication in tumor progression(2021) Newcomb, Rachel LeanneWhole-genome duplication (WGD) generates polyploid cells possessing more than two copies of the genome. These events commonly occur during the evolution of human tumors across tissue types and mutational drivers, affecting an estimated 30-37% of all tumors. The frequency of WGD increases in advanced and metastatic tumors, and WGD is associated with poor prognosis in diverse tumor types, suggesting a functional role for polyploidy in tumor progression. Experimental evidence suggests that polyploidy has both tumor-promoting and suppressing effects. The polyploidization of a normally diploid cells often compromises genomic stability. In this way, WGD may be capable of promoting tumor formation, growth and progression, by facilitating the evolution of genetic heterogeneity on which selection can act. However, while some features of polyploidy can promote tumor growth, these features can also be countered by associated tumor suppressive qualities of polyploidization and associated cellular stresses. Chromosomal instability and resulting aneuploidy often have negative effects on cellular fitness; this can occur through the induction of proteotoxic stress, replication stress and delayed proliferation. Polyploidization can also be opposed by cell intrinsic and extrinsic pathways, including p53, the Hippo pathway and immunosurveillance. How these diverse and multifaceted features of polyploid cells work together to regulate tumor progression remains unclear.
Using a genetically engineered mouse model of HER2-driven breast cancer, we explored the prevalence and consequences of whole-genome duplication during tumor growth and recurrence. While primary tumors in this model are invariably diploid, nearly 40% of recurrent tumors undergo WGD. WGD in recurrent tumors was associated with increased chromosomal instability, decreased rates of proliferation and increased survival in stress conditions. The effects of WGD on tumor growth were dependent on tumor stage. Surprisingly, in recurrent tumor cells, WGD slowed tumor formation, tumor growth rate and opposed the process of recurrence, while WGD promoted the growth of primary tumors. Our findings highlight the importance of identifying conditions that promote the growth of polyploid tumors, including the cooperating genetic mutations that allow cells to overcome the barriers to WGD tumor cell growth and proliferation.
While our results revealed fitness disadvantages for recurrent polyploid tumor cells, the paradox remains that WGD is common in cancer cells despite this, suggesting that cells must evolve ways to overcome barriers to tumorigenesis. These findings suggest that a polyploid cancer cell may be delicately balanced, relying on certain pathways or processes to compensate for its cellular deficiencies more than their diploid counterparts. Ploidy-specific lethality describes the phenomenon in which inhibiting the activity or expression of a specific protein results in death of polyploid cells but not their diploid counterparts. To interrogate this idea, we next employed our models of recurrent polyploid cells to explore the impact of polyploidization on gene expression and signaling dependencies. Using RNA sequencing we uncovered that tetraploid cells exhibited decreased expression of genes of the cGAS-STING pathway. We performed two loss-of-function CRISPR screens against the kinome, one in vitro and one in vivo, to identify ploidy-specific lethal genes. The in vivo screen revealed candidates for ploidy-specific lethal genes including Srpk1, Mark4 and Ryk. Together these results demonstrated that polyploid recurrent tumor cells exhibit unique gene expression patterns that may reflect selection pressure of the immune system and may rely on unique survival mechanisms in vivo.
Item Open Access Expression in aneuploid Drosophila S2 cells.(PLoS Biol, 2010-02-23) Zhang, Yu; Malone, John H; Powell, Sara K; Periwal, Vipul; Spana, Eric; Macalpine, David M; Oliver, BrianExtensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.Item Open Access Latent factor analysis to discover pathway-associated putative segmental aneuploidies in human cancers.(PLoS Comput Biol, 2010-09-02) Lucas, Joseph E; Kung, Hsiu-Ni; Chi, Jen-Tsan ATumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of "trans"-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1alpha protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.Item Open Access Tel1p and Mec1p Regulate Chromosome Segregation and Chromosome Rearrangements in Saccharomyces cerevisiae(2010) McCulley, Jennifer L.Cancer cells often have elevated frequencies of chromosomal aberrations, and it is likely that loss of genome stability is one driving force behind tumorigenesis. Deficiencies in DNA replication, DNA repair, or cell cycle checkpoints can all contribute to increased rates of chromosomal duplications, deletions and translocations. The human ATM and ATR proteins are known to participate in the DNA damage response and DNA replication checkpoint pathways and are critical to maintaining genome stability. The Saccharomyces cerevisiae homologues of ATM and ATR are Tel1p and Mec1p, respectively. Because Tel1p and Mec1p are partially functionally redundant, loss of both Tel1p and Mec1p in haploid yeast cells (tel1 mec1 strains) results in synergistically elevated rates of chromosomal aberrations, including terminal duplications, chromosomal duplications, and telomere-telomere fusions. To determine the effect of Tel1p and Mec1p on chromosome aberrations that cannot be recovered in haploid strains, such as chromosome loss, I investigated the phenotypes associated with the tel1 mec1 mutations in diploid cells. In the absence of induced DNA damage, tel1 mec1 diploid yeast strains exhibit extremely high rates of aneuploidy and chromosome rearrangements. There is a significant bias towards trisomy of chromosomes II, VIII, X, and XII, whereas the smallest chromosomes I and VI are commonly monosomic.
The telomere defects associated with tel1 mec1 strains do not cause the high rates of aneuploidy, as restoring wild-type telomere length in these strains by expression of the Cdc13p-Est2p fusion protein does not prevent cells from becoming aneuploid. The tel1 mec1 diploids are not sensitive to the microtubule-destabilizing drug benomyl, nor do they arrest the cell cycle in response to the drug, indicating that the spindle assembly checkpoint is functional. The chromosome missegregation phenotypes of tel1 mec1 diploids mimic those observed in mutant strains that do not achieve biorientation of sister chromatids during mitosis.
The chromosome rearrangements in tel1 mec1 cells reflect both homologous recombination between non-allelic Ty elements, as well as non-homologous end joining (NHEJ) events. Restoring wild-type telomere length with the Cdc13p-Est2p fusion protein substantially reduces the levels of chromosome rearrangements (terminal additions and deletions of chromosome arms, interstitial duplications, and translocations). This result suggests that most of the rearrangements in tel1 mec1 diploids are initiated by telomere-telomere fusions. One common chromosome rearrangement in tel1 mec1 strains is an amplification of sequences on chromosome XII between the left telomere and rDNA sequences on the right arm. I have termed this aberration a "schromosome." Preliminary evidence indicates that the schromosome exists in the tel1 mec1 cells as an uncapped chromosome fragment that gets resected over time.