Browsing by Subject "Annotation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex.(Journal of biomedical semantics, 2014-01) Balhoff, James P; Dahdul, Wasila M; Dececchi, T Alexander; Lapp, Hilmar; Mabee, Paula M; Vision, Todd JBackground
Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators.Results
We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave.Conclusions
With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.Item Open Access Building Gene Regulatory Networks in Development: Deploying Small GTPases(2007-02-19T18:31:36Z) Beane, Wendy ScottGTPases are integral components of virtually every known signal transduction pathway, and mutations in GTPases frequently cause disease. A genomic analysis identified and annotated 174 GTPases in the sea urchin genome (with 90% expressed in the embryo), covering five classes of GTP-binding proteins: the Ras superfamily, the heterotrimeric G proteins, the dynamin superfamily, the SRP/SR GTPases, and the translational GTPases. The sea urchin genome was found to contain large lineage-specific expansions within the Ras superfamily. For the Rho, Rab, Arf and Ras subfamilies, the number of sea urchin genes relative to vertebrate orthologs suggests reduced genomic complexity in the sea urchin. However, gene duplications in the sea urchin increased overall numbers, such that total sea urchin gene numbers of these GTPase families approximate vertebrate gene numbers. This suggests lineage-specific expansions as an important component of genomic evolution in signal transduction. A focused analysis on RhoA, a monomeric GTPase, shows it contributes to multiple signal transduction pathways during sea urchin development. The data reveal that RhoA inhibition in the sea urchin results in a failure to invaginate during gastrulation. Conversely, activated RhoA induces precocious archenteron invagination, complete with the associated actin rearrangements and extracellular matrix secretion. Although RhoA regulates convergent extension movements in vertebrates, our experiments show RhoA activity does not regulate convergent extension in the sea urchin. Instead, the results suggest RhoA serves as a trigger to initiate invagination, and once initiation occurs RhoA activity is no longer involved in subsequent gastrulation movements. RhoA signaling was also observed during endomesodermal specification in the sea urchin. Data show that LvRhoA activity is required, downstream of a partially characterized Early Signal, for SoxB1 clearance from endomesodermal nuclei (and subsequent expression of GataE and Endo16 genes). Investigations also suggest that within the endomesoderm, RhoA clears SoxB1 as part of Wnt8 signaling, as activated RhoA is sufficient to rescue Wnt8-inhibited embryos. These data provide evidence of the first molecular components involved in SoxB1 clearance, as well as highlight a previously unrecognized role for RhoA during endomesodermal specification. These analyses suggest RhoA signaling is integral to the proper specification and morphogenesis of the sea urchin endomesoderm.