Browsing by Subject "Antibodies, Neutralizing"
Now showing 1 - 20 of 41
Results Per Page
Sort Options
Item Open Access A genetically engineered, stem-cell-derived cellular vaccine.(Cell reports. Medicine, 2022-12) Cooper, Amanda; Sidaway, Adam; Chandrashekar, Abishek; Latta, Elizabeth; Chakraborty, Krishnendu; Yu, Jingyou; McMahan, Katherine; Giffin, Victoria; Manickam, Cordelia; Kroll, Kyle; Mosher, Matthew; Reeves, R Keith; Gam, Rihab; Arthofer, Elisa; Choudhry, Modassir; Henley, Tom; Barouch, Dan HDespite rapid clinical translation of COVID-19 vaccines in response to the global pandemic, an opportunity remains for vaccine technology innovation to address current limitations and meet challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) genetically engineered to mimic natural physiological immunity induced upon viral infection of host cells. Cells engineered to express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike as a representative viral antigen induce robust neutralizing antibodies in immunized non-human primates. Similar titers generated in this established non-human primate (NHP) model have translated into protective human neutralizing antibody levels in SARS-CoV-2-vaccinated individuals. Animals vaccinated with ancestral spike antigens and subsequently challenged with SARS-CoV-2 Delta variant in a heterologous challenge have an approximately 3 log decrease in viral subgenomic RNA in the lungs. This cellular vaccine is designed as a scalable cell line with a modular poly-antigenic payload, allowing for rapid, large-scale clinical manufacturing and use in an evolving viral variant environment.Item Open Access A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice.(The Journal of clinical investigation, 2023-02) Kuraoka, Masayuki; Aschner, Clare Burn; Windsor, Ian W; Mahant, Aakash Mahant; Garforth, Scott J; Kong, Susan Luozheng; Achkar, Jacqueline M; Almo, Steven C; Kelsoe, Garnett; Herold, Betsy CThere is an unmet need for monoclonal antibodies (mAbs) for prevention or as adjunctive treatment of herpes simplex virus (HSV) disease. Most vaccine and mAb efforts focus on neutralizing antibodies, but for HSV this strategy has proven ineffective. Preclinical studies with a candidate HSV vaccine strain, ΔgD-2, demonstrated that non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC) provide active and passive protection against HSV-1 and HSV-2. We hypothesized that this vaccine provides a tool to identify and characterize protective mAbs. We isolated HSV-specific mAbs from germinal center and memory B cells and bone marrow plasmacytes of ΔgD-2-vaccinated mice and evaluated these mAbs for binding, neutralizing, and FcγR-activating activity and for protective efficacy in mice. The most potent protective mAb, BMPC-23, was not neutralizing but activated murine FcγRIV, a biomarker of ADCC. The cryo-electron microscopic structure of the Fab-glycoprotein B (gB) assembly identified domain IV of gB as the epitope. A single dose of BMPC-23 administered 24 hours before or after viral challenge provided significant protection when configured as mouse IgG2c and protected mice expressing human FcγRIII when engineered as a human IgG1. These results highlight the importance of FcR-activating antibodies in protecting against HSV.Item Open Access A Prevalent Focused Human Antibody Response to the Influenza Virus Hemagglutinin Head Interface.(mBio, 2021-06) McCarthy, Kevin R; Lee, Jiwon; Watanabe, Akiko; Kuraoka, Masayuki; Robinson-McCarthy, Lindsey R; Georgiou, George; Kelsoe, Garnett; Harrison, Stephen CNovel animal influenza viruses emerge, initiate pandemics, and become endemic seasonal variants that have evolved to escape from prevalent herd immunity. These processes often outpace vaccine-elicited protection. Focusing immune responses on conserved epitopes may impart durable immunity. We describe a focused, protective antibody response, abundant in memory and serum repertoires, to a conserved region at the influenza virus hemagglutinin (HA) head interface. Structures of 11 examples, 8 reported here, from seven human donors demonstrate the convergence of responses on a single epitope. The 11 are genetically diverse, with one class having a common, IGκV1-39, light chain. All of the antibodies bind HAs from multiple serotypes. The lack of apparent genetic restriction and potential for elicitation by more than one serotype may explain their abundance. We define the head interface as a major target of broadly protective antibodies with the potential to influence the outcomes of influenza virus infection. IMPORTANCE The rapid appearance of mutations in circulating human influenza viruses and selection for escape from herd immunity require prediction of likely variants for an annual updating of influenza vaccines. The identification of human antibodies that recognize conserved surfaces on the influenza virus hemagglutinin (HA) has prompted efforts to design immunogens that might selectively elicit such antibodies. The recent discovery of a widely prevalent antibody response to the conserved interface between two HA "heads" (the globular, receptor-binding domains at the apex of the spike-like trimer) has added a new target for these efforts. We report structures of eight such antibodies, bound with HA heads, and compare them with each other and with three others previously described. Although genetically diverse, they all converge on a common binding site. The analysis here can guide immunogen design for preclinical trials.Item Open Access An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer.(J Clin Invest, 2010-09) Morse, MA; Hobeika, AC; Osada, T; Berglund, P; Hubby, B; Negri, S; Niedzwiecki, D; Devi, GR; Burnett, BK; Clay, TM; Smith, J; Lyerly, HKTherapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.Item Open Access Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.(PLoS One, 2010-01-20) Corti, Davide; Langedijk, Johannes PM; Hinz, Andreas; Seaman, Michael S; Vanzetta, Fabrizia; Fernandez-Rodriguez, Blanca M; Silacci, Chiara; Pinna, Debora; Jarrossay, David; Balla-Jhagjhoorsingh, Sunita; Willems, Betty; Zekveld, Maria J; Dreja, Hanna; O'Sullivan, Eithne; Pade, Corinna; Orkin, Chloe; Jeffs, Simon A; Montefiori, David C; Davis, David; Weissenhorn, Winfried; McKnight, Aine; Heeney, Jonathan L; Sallusto, Federica; Sattentau, Quentin J; Weiss, Robin A; Lanzavecchia, AntonioBACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.Item Open Access Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1.(J Virol, 2015-10) Pollara, Justin; McGuire, Erin; Fouda, Genevieve G; Rountree, Wes; Eudailey, Josh; Overman, R Glenn; Seaton, Kelly E; Deal, Aaron; Edwards, R Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie AE; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C; Jamieson, Denise J; van der Horst, Charles; Kourtis, Athena P; Tomaras, Georgia D; Ferrari, Guido; Permar, Sallie RUNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.Item Open Access Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.(Nature, 2013-04-25) Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S Munir; Boyd, Scott D; Fire, Andrew Z; Roskin, Krishna M; Schramm, Chaim A; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; NISC Comparative Sequencing Program; Mullikin, James C; Gnanakaran, S; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C; Parks, Robert; Lloyd, Krissey E; Scearce, Richard M; Soderberg, Kelly A; Cohen, Myron; Kamanga, Gift; Louder, Mark K; Tran, Lillian M; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, M Gordon; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M; Hahn, Beatrice H; Kepler, Thomas B; Korber, Bette TM; Kwong, Peter D; Mascola, John R; Haynes, Barton FCurrent human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.Item Open Access Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk.(Journal of virology, 2016-05) Nelson, Cody S; Pollara, Justin; Kunz, Erika L; Jeffries, Thomas L; Duffy, Ryan; Beck, Charles; Stamper, Lisa; Wang, Minyue; Shen, Xiaoying; Pickup, David J; Staats, Herman F; Hudgens, Michael G; Kepler, Thomas B; Montefiori, David C; Moody, M Anthony; Tomaras, Georgia D; Liao, Hua-Xin; Haynes, Barton F; Ferrari, Guido; Fouda, Genevieve GA; Permar, Sallie RUnlabelled
Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding.Importance
Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.Item Open Access Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages.(Cell host & microbe, 2018-11) Zimmerman, Matthew G; Quicke, Kendra M; O'Neal, Justin T; Arora, Nitin; Machiah, Deepa; Priyamvada, Lalita; Kauffman, Robert C; Register, Emery; Adekunle, Oluwaseyi; Swieboda, Dominika; Johnson, Erica L; Cordes, Sarah; Haddad, Lisa; Chakraborty, Rana; Coyne, Carolyn B; Wrammert, Jens; Suthar, Mehul SZika virus (ZIKV), which emerged in regions endemic to dengue virus (DENV), is vertically transmitted and results in adverse pregnancy outcomes. Antibodies to DENV can cross-react with ZIKV, but whether these antibodies influence ZIKV vertical transmission remains unclear. Here, we find that DENV antibodies increase ZIKV infection of placental macrophages (Hofbauer cells [HCs]) from 10% to over 80% and enhance infection of human placental explants. ZIKV-anti-DENV antibody complexes increase viral binding and entry into HCs but also result in blunted type I interferon, pro-inflammatory cytokine, and antiviral responses. Additionally, ZIKV infection of HCs and human placental explants is enhanced in an immunoglobulin G subclass-dependent manner, and targeting FcRn reduces ZIKV replication in human placental explants. Collectively, these findings support a role for pre-existing DENV antibodies in enhancement of ZIKV infection of select placental cell types and indicate that pre-existing immunity to DENV should be considered when addressing ZIKV vertical transmission.Item Open Access Differential inhibition of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and TZM-bl cells by endotoxin-mediated chemokine and gamma interferon production.(AIDS Res Hum Retroviruses, 2010-03) Geonnotti, Anthony R; Bilska, Miroslawa; Yuan, Xing; Ochsenbauer, Christina; Edmonds, Tara G; Kappes, John C; Liao, Hua-Xin; Haynes, Barton F; Montefiori, David CBacterial lipopolysaccharide (endotoxin) is a frequent contaminant of biological specimens and is also known to be a potent inducer of beta-chemokines and other soluble factors that inhibit HIV-1 infection in vitro. Though lipopolysaccharide (LPS) has been shown to stimulate the production of soluble HIV-1 inhibitors in cultures of monocyte-derived macrophages, the ability of LPS to induce similar inhibitors in other cell types is poorly characterized. Here we show that LPS exhibits potent anti-HIV activity in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) but has no detectable anti-HIV-1 activity in TZM-bl cells. The anti-HIV-1 activity of LPS in PBMCs was strongly associated with the production of beta-chemokines from CD14-positive monocytes. Culture supernatants from LPS-stimulated PBMCs exhibited potent anti-HIV-1 activity when added to TZM-bl cells but, in this case, the antiviral activity appeared to be related to IFN-gamma rather than to beta-chemokines. These observations indicate that LPS stimulates PBMCs to produce a complex array of soluble HIV-1 inhibitors, including beta-chemokines and IFN-gamma, that differentially inhibit HIV-1 depending on the target cell type. The results also highlight the need to use endotoxin-free specimens to avoid artifacts when assessing HIV-1-specific neutralizing antibodies in PBMC-based assays.Item Open Access Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine.(Nature biomedical engineering, 2022-07-04) Wang, Zhenzhen; Popowski, Kristen D; Zhu, Dashuai; de Juan Abad, Blanca López; Wang, Xianyun; Liu, Mengrui; Lutz, Halle; De Naeyer, Nicole; DeMarco, C Todd; Denny, Thomas N; Dinh, Phuong-Uyen C; Li, Zhenhua; Cheng, KeThe first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma. In mice, the vaccine elicited RBD-specific IgG antibodies, mucosal IgA responses and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile in the animals' lungs, and cleared them of SARS-CoV-2 pseudovirus after a challenge. In hamsters, two doses of the vaccine attenuated severe pneumonia and reduced inflammatory infiltrates after a challenge with live SARS-CoV-2. Inhalable and room-temperature-stable virus-like particles may become promising vaccine candidates.Item Open Access Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.(PLoS Comput Biol, 2010-10-07) Gnanakaran, S; Daniels, MG; Bhattacharya, T; Lapedes, AS; Sethi, A; Li, M; Tang, H; Greene, K; Gao, H; Haynes, BF; Cohen, MS; Shaw, GM; Seaman, MS; Kumar, A; Gao, F; Montefiori, DC; Korber, BA steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.Item Open Access HIV-1 envelope gp41 broadly neutralizing antibodies: hurdles for vaccine development.(PLoS Pathog, 2014-05) Verkoczy, Laurent; Kelsoe, Garnett; Haynes, Barton FItem Open Access HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies.(J Virol, 2011-09) Fouda, GG; Yates, NL; Pollara, J; Shen, X; Overman, GR; Mahlokozera, T; Wilks, AB; Kang, HH; Salazar-Gonzalez, JF; Salazar, MG; Kalilani, L; Meshnick, SR; Hahn, BH; Shaw, GM; Lovingood, RV; Denny, TN; Haynes, B; Letvin, NL; Ferrari, G; Montefiori, DC; Tomaras, GD; Permar, SR; Immunology, the Center for HIVAIDS VaccineDespite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk.Item Open Access Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies.(J Exp Med, 2013-02-11) Yang, Guang; Holl, T Matt; Liu, Yang; Li, Yi; Lu, Xiaozhi; Nicely, Nathan I; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Cain, Derek W; Spicer, Leonard; VandeBerg, John L; Haynes, Barton F; Kelsoe, GarnettMany human monoclonal antibodies that neutralize multiple clades of HIV-1 are polyreactive and bind avidly to mammalian autoantigens. Indeed, the generation of neutralizing antibodies to the 2F5 and 4E10 epitopes of HIV-1 gp41 in man may be proscribed by immune tolerance because mice expressing the V(H) and V(L) regions of 2F5 have a block in B cell development that is characteristic of central tolerance. This developmental blockade implies the presence of tolerizing autoantigens that are mimicked by the membrane-proximal external region of HIV-1 gp41. We identify human kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3) as the primary conserved, vertebrate self-antigens recognized by the 2F5 and 4E10 antibodies, respectively. 2F5 binds the H4 domain of KYNU which contains the complete 2F5 linear epitope (ELDKWA). 4E10 recognizes an epitope of SF3B3 that is strongly dependent on hydrophobic interactions. Opossums carry a rare KYNU H4 domain that abolishes 2F5 binding, but they retain the SF3B3 4E10 epitope. Immunization of opossums with HIV-1 gp140 induced extraordinary titers of serum antibody to the 2F5 ELDKWA epitope but little or nothing to the 4E10 determinant. Identification of structural motifs shared by vertebrates and HIV-1 provides direct evidence that immunological tolerance can impair humoral responses to HIV-1.Item Open Access Immune checkpoint modulation enhances HIV-1 antibody induction.(Nature communications, 2020-02-19) Bradley, Todd; Kuraoka, Masayuki; Yeh, Chen-Hao; Tian, Ming; Chen, Huan; Cain, Derek W; Chen, Xuejun; Cheng, Cheng; Ellebedy, Ali H; Parks, Robert; Barr, Maggie; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Bouton-Verville, Hilary; Santra, Sampa; Wiehe, Kevin; Lewis, Mark G; Ogbe, Ane; Borrow, Persephone; Montefiori, David; Bonsignori, Mattia; Anthony Moody, M; Verkoczy, Laurent; Saunders, Kevin O; Ahmed, Rafi; Mascola, John R; Kelsoe, Garnett; Alt, Frederick W; Haynes, Barton FEliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses.Item Open Access Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.(Nature, 2014-01-23) Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D; Mason, Rosemarie D; Welles, Hugh C; Fischer, Will; Labranche, Celia; Foulds, Kathryn E; Louder, Mark K; Yang, Zhi-Yong; Todd, John-Paul M; Buzby, Adam P; Mach, Linh V; Shen, Ling; Seaton, Kelly E; Ward, Brandy M; Bailer, Robert T; Gottardo, Raphael; Gu, Wenjuan; Ferrari, Guido; Alam, S Munir; Denny, Thomas N; Montefiori, David C; Tomaras, Georgia D; Korber, Bette T; Nason, Martha C; Seder, Robert A; Koup, Richard A; Letvin, Norman L; Rao, Srinivas S; Nabel, Gary J; Mascola, John RA major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.Item Open Access In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies(Cell, 2021) Li, Dapeng; Edwards, Robert J; Manne, Kartik; Martinez, David R; Schäfer, Alexandra; Alam, S Munir; Wiehe, Kevin; Lu, Xiaozhi; Parks, Robert; Sutherland, Laura L; othersSARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.Item Open Access Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees.(J Virol, 2013-07) Liu, Pinghuang; Yates, Nicole L; Shen, Xiaoying; Bonsignori, Mattia; Moody, M Anthony; Liao, Hua-Xin; Fong, Youyi; Alam, S Munir; Overman, R Glenn; Denny, Thomas; Ferrari, Guido; Ochsenbauer, Christina; Kappes, John C; Polonis, Victoria R; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Montefiori, David C; Gilbert, Peter; Michael, Nelson L; Kim, Jerome H; Haynes, Barton F; Tomaras, Georgia DThe detailed examination of the antibody repertoire from RV144 provides a unique template for understanding potentially protective antibody functions. Some potential immune correlates of protection were untested in the correlates analyses due to inherent assay limitations, as well as the need to keep the correlates analysis focused on a limited number of endpoints to achieve statistical power. In an RV144 pilot study, we determined that RV144 vaccination elicited antibodies that could bind infectious virions (including the vaccine strains HIV-1 CM244 and HIV-1 MN and an HIV-1 strain expressing transmitted/founder Env, B.WITO.c). Among vaccinees with the highest IgG binding antibody profile, the majority (78%) captured the infectious vaccine strain virus (CM244), while a smaller proportion of vaccinees (26%) captured HIV-1 transmitted/founder Env virus. We demonstrated that vaccine-elicited HIV-1 gp120 antibodies of multiple specificities (V3, V2, conformational C1, and gp120 conformational) mediated capture of infectious virions. Although capture of infectious HIV-1 correlated with other humoral immune responses, the extent of variation between these humoral responses and virion capture indicates that virion capture antibodies occupy unique immunological space.Item Open Access Isolation of HIV-1-neutralizing mucosal monoclonal antibodies from human colostrum.(PLoS One, 2012) Friedman, James; Alam, S Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D; Haynes, Barton F; Liao, Hua-Xin; Moody, M Anthony; Permar, Sallie RBACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.
- «
- 1 (current)
- 2
- 3
- »