Browsing by Subject "Antigens, CD3"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Beta-arrestin-2 regulates the development of allergic asthma.(J Clin Invest, 2003-08) Walker, Julia KL; Fong, Alan M; Lawson, Barbara L; Savov, Jordan D; Patel, Dhavalkumar D; Schwartz, David A; Lefkowitz, Robert JAsthma is a chronic inflammatory disorder of the airways that is coordinated by Th2 cells in both human asthmatics and animal models of allergic asthma. Migration of Th2 cells to the lung is key to their inflammatory function and is regulated in large part by chemokine receptors, members of the seven-membrane-spanning receptor family. It has been reported recently that T cells lacking beta-arrestin-2, a G protein-coupled receptor regulatory protein, demonstrate impaired migration in vitro. Here we show that allergen-sensitized mice having a targeted deletion of the beta-arrestin-2 gene do not accumulate T lymphocytes in their airways, nor do they demonstrate other physiological and inflammatory features characteristic of asthma. In contrast, the airway inflammatory response to LPS, an event not coordinated by Th2 cells, is fully functional in mice lacking beta-arrestin-2. beta-arrestin-2-deficient mice demonstrate OVA-specific IgE responses, but have defective macrophage-derived chemokine-mediated CD4+ T cell migration to the lung. This report provides the first evidence that beta-arrestin-2 is required for the manifestation of allergic asthma. Because beta-arrestin-2 regulates the development of allergic inflammation at a proximal step in the inflammatory cascade, novel therapies focused on this protein may prove useful in the treatment of asthma.Item Open Access The Immunology Quality Assessment Proficiency Testing Program for CD3⁺4⁺ and CD3⁺8⁺ lymphocyte subsets: a ten year review via longitudinal mixed effects modeling.(Journal of Immunological Methods, 2014-07) Bainbridge, J; Wilkening, CL; Rountree, W; Louzao, R; Wong, J; Perza, N; Garcia, A; Denny, TNSince 1999, the National Institute of Allergy and Infectious Diseases Division of AIDS (NIAID DAIDS) has funded the Immunology Quality Assessment (IQA) Program with the goal of assessing proficiency in basic lymphocyte subset immunophenotyping for each North American laboratory supporting the NIAID DAIDS HIV clinical trial networks. Further, the purpose of this program is to facilitate an increase in the consistency of interlaboratory T-cell subset measurement (CD3(+)4(+)/CD3(+)8(+) percentages and absolute counts) and likewise, a decrease in intralaboratory variability. IQA T-cell subset measurement proficiency testing was performed over a ten-year period (January 2003-July 2012), and the results were analyzed via longitudinal analysis using mixed effects models. The goal of this analysis was to describe how a typical laboratory (a statistical modeling construct) participating in the IQA Program performed over time. Specifically, these models were utilized to examine trends in interlaboratory agreement, as well as successful passing of proficiency testing. Intralaboratory variability (i.e., precision) was determined by the repeated measures variance, while fixed and random effects were taken into account for changes in interlaboratory agreement (i.e., accuracy) over time. A flow cytometer (single-platform technology, SPT) or a flow cytometer/hematology analyzer (dual-platform technology, DPT) was also examined as a factor for accuracy and precision. The principal finding of this analysis was a significant (p<0.001) increase in accuracy of T-cell subset measurements over time, regardless of technology type (SPT or DPT). Greater precision was found in SPT measurements of all T-cell subset measurements (p<0.001), as well as greater accuracy of SPT on CD3(+)4(+)% and CD3(+)8(+)% assessments (p<0.05 and p<0.001, respectively). However, the interlaboratory random effects variance in DPT results indicates that for some cases DPT can have increased accuracy compared to SPT. Overall, these findings demonstrate that proficiency in and among IQA laboratories have, in general, improved over time and that platform type differences in performance do exist.