Browsing by Subject "Antigens, Differentiation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.(Science (New York, N.Y.), 2005-02) Boyce, Michael; Bryant, Kevin F; Jousse, Céline; Long, Kai; Harding, Heather P; Scheuner, Donalyn; Kaufman, Randal J; Ma, Dawei; Coen, Donald M; Ron, David; Yuan, JunyingMost protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.Item Open Access Genetic variants of GADD45A, GADD45B and MAPK14 predict platinum-based chemotherapy-induced toxicities in Chinese patients with non-small cell lung cancer.(Oncotarget, 2016-05) Jia, Ming; Zhu, Meiling; Wang, Mengyun; Sun, Menghong; Qian, Ji; Ding, Fei; Chang, Jianhua; Wei, QingyiThe JNK and P38α pathways play a crucial role in tissue homeostasis, apoptosis and autophagy under genotoxic stresses, but it is unclear whether single nucleotide polymorphisms (SNPs) of genes in these pathways play a role in platinum-based chemotherapy-induced toxicities in patients with advanced non-small cell lung cancer (NSCLC). We genotyped 11 selected, independent, potentially functional SNPs of nine genes in the JNK and P38α pathways in 689 patients with advanced NSCLC treated with platinum-combination chemotherapy regimens. Associations between these SNPs and chemotherapy toxicities were tested in a discovery group of 345 patients and then validated in a replication group of 344 patients. In both discovery and validation groups as well as their pooled analysis, carriers of GADD45B rs2024144T variant allele had a significantly higher risk for severe hematologic toxicity and carriers of MAPK14 rs3804451A variant allele had a significantly higher risk for both overall toxicity and gastrointestinal toxicity. In addition, carriers of GADD45A rs581000C had a lower risk of anemia, while carriers of GADD45B rs2024144T had a significantly higher risk for leukocytopenia or agranulocytosis. The present study provides evidence that genetic variants in genes involved in the JNK and P38α pathways may predict platinum-based chemotherapy toxicity outcomes in patients with advanced NSCLC. Larger studies of other patient populations are needed to validate our findings.