Browsing by Subject "Antioxidants"
Results Per Page
Sort Options
Item Open Access 5-Hydroxymethylfurfural reduces skeletal muscle superoxide production and modifies force production in rats exposed to hypobaric hypoxia.(Physiological reports, 2023-07) Ciarlone, Geoffrey E; Swift, Joshua M; Williams, Brian T; Mahon, Richard T; Roney, Nicholas G; Yu, Tianzheng; Gasier, Heath GDecreased blood-tissue oxygenation at high altitude (HA) increases mitochondrial oxidant production and reduces exercise capacity. 5-Hydroxymethylfurfural (5-HMF) is an antioxidant that increases hemoglobin's binding affinity for oxygen. For these reasons, we hypothesized that 5-HMF would improve muscle performance in rats exposed to a simulated HA of ~5500 m. A secondary objective was to measure mitochondrial activity and dynamic regulation of fission and fusion because they are linked processes impacted by HA. Fisher 344 rats received 5-HMF (40 mg/kg/day) or vehicle during exposure to sea level or HA for 72 h. Right ankle plantarflexor muscle function was measured pre- and post-exposure. Post-exposure measurements included arterial blood gas and complete blood count, flexor digitorum brevis myofiber superoxide production and mitochondrial membrane potential (ΔΨm), and mitochondrial dynamic regulation in the soleus muscle. HA reduced blood oxygenation, increased superoxide levels and lowered ΔΨm, responses that were accompanied by decreased peak isometric torque and force production at frequencies >75 Hz. 5-HMF increased isometric force production and lowered oxidant production at sea level. In HA exposed animals, 5-HMF prevented a decline in isometric force production at 75-125 Hz, prevented an increase in superoxide levels, further decreased ΔΨm, and increased mitochondrial fusion 2 protein expression. These results suggest that 5-HMF may prevent a decrease in hypoxic force production during submaximal isometric contractions by an antioxidant mechanism.Item Open Access COPD: balancing oxidants and antioxidants.(Int J Chron Obstruct Pulmon Dis, 2015) Fischer, Bernard M; Voynow, Judith A; Ghio, Andrew JChronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world. The disease encompasses emphysema, chronic bronchitis, and small airway obstruction and can be caused by environmental exposures, primarily cigarette smoking. Since only a small subset of smokers develop COPD, it is believed that host factors interact with the environment to increase the propensity to develop disease. The major pathogenic factors causing disease include infection and inflammation, protease and antiprotease imbalance, and oxidative stress overwhelming antioxidant defenses. In this review, we will discuss the major environmental and host sources for oxidative stress; discuss how oxidative stress regulates chronic bronchitis; review the latest information on genetic predisposition to COPD, specifically focusing on oxidant/antioxidant imbalance; and review future antioxidant therapeutic options for COPD. The complexity of COPD will necessitate a multi-target therapeutic approach. It is likely that antioxidant supplementation and dietary antioxidants will have a place in these future combination therapies.Item Open Access Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma.(BMC Cancer, 2010-05-19) DeLorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry, Charles P; Rice, Terri; Il'yasova, Dora; Wrensch, MargaretBACKGROUND: Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. METHODS: Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV) and conducted for all (including proxy) subjects and for a subset of self-reported subjects. RESULTS: Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n=748) to self-reported cases only (n=450). For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg) intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg), for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases; high intake of vitamin C and genistein and the highest level of the antioxidant index were associated with poorer survival for all cases. CONCLUSIONS: The associations observed in our study suggest that the influence of some antioxidants on survival following a diagnosis of malignant glioma are inconsistent and vary by histology group. Further research in a large sample of glioma patients is needed to confirm/refute our results.Item Open Access Epigenetic Response to Low-Dose Ionizing Radiation(2012) Bernal, Autumn JoyLow-dose ionizing radiation (LDIR) exposure (under 10.0 centigray (cGy)) from man-made sources, such as diagnostic imaging, predominates in the US population and comprises nearly 50% of an average individual's yearly radiation exposure (Ullrich, Brooks et al. 2009). The increase in such exposures has led to public and government alarm about the impact of LDIR on human health (Ullrich, Brooks et al. 2009). Besides the mutational effects of radiation exposure, there is concern it might also result in modifications of the epigenome. Such aberrations can disrupt normal development and are involved in the progression of numerous diseases, including cancer (Gasser and Li 2011). High doses of radiation (>100.0 cGy) have been shown to cause epigenetic disruption (Kaup, Grandjean et al. 2006; Tamminga, Koturbash et al. 2008; Ilnytskyy, Koturbash et al. 2009), which is necessary for the persistence of radiation-induced genomic instability (Rugo, Mutamba et al. 2011); however, it is presently unclear to what extent LDIR in vivo alters the epigenome.
The viable yellow agouti (Avy) mouse was used here to characterize the dose-dependent epigenetic response to LDIR. The Avy mouse is a unique biological model that functions as a biosensor for environmentally induced epigenetic changes and disease susceptibility due to the presence of a metastable epiallele that modulates coat color (Waterland and Jirtle 2003). Pregnant dams were whole-body exposed to one of five doses of X-ray radiation ranging from 0-10.0 cGy on gestational day 4.5. Using a phantom mouse model, the intrauterine doses were estimated to be 0.0 cGy, 0.4 cGy, 0.7 cGy, 1.4 cGy, 3.0 cGy, and 7.6 cGy, respectively. At weaning, offspring coat colors were assessed and tissues were collected for methylation analysis. First, methylation changes at CpG sites in the Avy and Cdk activator binding protein (CabpIAP) metastable epialleles and at intracisternal a particle (IAP) elements across the genome were quantified using Sequenom technology. Second, three imprinted genes, Peg3, Nnat, and H19, were assessed for methylation changes in differentially methylated regions (DMRs) that regulate their parent-of-origin monoallelic expression using Sequenom technology. Lastly, it was postulated that the epigenetic changes at the Avy locus could be counteracted with dietary alterations. To test this hypothesis, female mice were placed on an antioxidant-supplemented diet prior to pregnancy and throughout gestation and lactation. Pregnant dams were irradiated with 3.0 cGy of whole-body X-rays. Offspring coat colors were assessed and methylation changes at the Avy allele were measured with the Sequenom platform.
Herein, I demonstrate that in utero LDIR exposure induced epigenetic changes in the Avy mouse in a dose-dependent and sex-specific manner. Acute, whole-body exposure to 0.7 cGy, 1.4 cGy, 3.0 cGy or 7.6 cGy X-rays significantly shifted offspring coat color distribution toward pseudoagouti. Acute exposure to 1.4 cGy, 3.0 cGy, and 7.6 cGy significantly increased methylation at multiple CpG sites in the Avy metastable epiallele in male offspring, but not female offspring. Methylation changes at DMRs in Nnat, Peg3, and H19 also occurred in a dose-dependent manner. Furthermore, inhibition of the phenotypic and Avy methylation changes with an antioxidant-supplemented diet suggests that the mechanisms to induce epigenetic changes are mediated by oxidative stress. These results demonstrate that relevant, low doses of radiation can elicit epigenetic changes that lead to a persistent phenotype, but can be mitigated with dietary supplementation. The successful completion of this project has resulted in the first in vivo epigenetic characterization of LDIR exposure and will contribute to the development of more relevant risk assessment strategies for protecting human populations.
Item Open Access Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.(PLoS One, 2008-05-07) Yu, Zengli; Li, Ping; Zhang, Mei; Hannink, Mark; Stamler, Jonathan S; Yan, ZhenOxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS) and nitric oxide (NO) determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS) in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos) and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.Item Open Access Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.(Exp Gerontol, 2012-05) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H Eka D; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; McGue, Matt; Christiansen, LeneHere we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.Item Open Access Interactions between oxidative stress and insulin/IGF-1 signaling for starvation resistance in Caenorhabditis elegans(2019-04-22) Jiao, MeganReactive oxygen species (ROS) are a natural byproduct of metabolism with roles in cell signaling and homeostasis but also generate oxidative stress. Past research demonstrates that ROS are a major factor in pathological conditions and the aging process in Caenorhabditis elegans and other organisms. Additionally, transcription factor gene daf-16 from the insulin/IGF-1 signaling (IIS) pathway is thought to help manage oxidative stress to mitigate such consequences, which may be partly due to endogenous antioxidant genes downstream of it. Furthermore, exogenous antioxidant drugs such as N-acetylcysteine (NAC) have been found to extend mean and maximum survival time in C. elegans under a variety of conditions, including exposure to oxidative stress, high heat, and UV radiation. However, their effects on starvation resistance have not yet been examined. To uncover how the IIS pathway interacts with ROS and antioxidants in C. elegans, we performed assays for two measures of starvation resistance: starvation survival and growth rate following starvation, which enabled us to investigate how the presence and absence of ROS impacted the starvation recovery process. We demonstrated that NAC can significantly increase and decrease survival in wild-type worms in a dose-dependent manner. Additionally, NAC also increased worm length, a metric of their growth rate. In contrast, daf-16 mutants exposed to NAC had decreased size and survival. Moreover, mutating endogenous antioxidant genes downstream of daf-16 did not cause a significant decrease in worm survival. These complex interactions between IIS and NAC suggest that genotype may position worms at different baselines on a hormesis curve for antioxidants and consequently alter their sensitivity to ROS quenching.Item Open Access Interactions of oxygen radicals with airway epithelium.(Environ Health Perspect, 1994-12) Wright, DT; Cohn, LA; Li, H; Fischer, B; Li, CM; Adler, KBReactive oxygen species (ROS) have been implicated in the pathogenesis of numerous disease processes. Epithelial cells lining the respiratory airways are uniquely vulnerable regarding potential for oxidative damage due to their potential for exposure to both endogenous (e.g., mitochondrial respiration, phagocytic respiratory burst, cellular oxidases) and exogenous (e.g., air pollutants, xenobiotics, catalase negative organisms) oxidants. Airway epithelial cells use several nonenzymatic and enzymatic antioxidant mechanisms to protect against oxidative insult. Nonenzymatic defenses include certain vitamins and low molecular weight compounds such as thiols. The enzymes superoxide dismutase, catalase, and glutatione peroxidase are major sources of antioxidant protection. Other materials associated with airway epithelium such as mucus, epithelial lining fluid, and even the basement membrane/extracellular matrix may have protective actions as well. When the normal balance between oxidants and antioxidants is upset, oxidant stress ensues and subsequent epithelial cell alterations or damage may be a critical component in the pathogenesis of several respiratory diseases. Oxidant stress may profoundly alter lung physiology including pulmonary function (e.g., forced expiratory volumes, flow rates, and maximal inspiratory capacity), mucociliary activity, and airway reactivity. ROS may induce airway inflammation; the inflammatory process may serve as an additional source of ROS in airways and provoke the pathophysiologic responses described. On a more fundamental level, cellular mechanisms in the pathogenesis of ROS may involve activation of intracellular signaling enzymes including phospholipases and protein kinases stimulating the release of inflammatory lipids and cytokines. Respiratory epithelium may be intimately involved in defense against, and pathophysiologic changes invoked by, ROS.Item Open Access Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders.(Antioxidants & redox signaling, 2014-05) Sheng, Huaxin; Chaparro, Raphael E; Sasaki, Toshihiro; Izutsu, Miwa; Pearlstein, Robert D; Tovmasyan, Artak; Warner, David SSignificance
Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease.Recent advances
Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment.Critical issues
Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders.Future directions
Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.Item Open Access Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.(Redox biology, 2018-06) Sidlauskaite, Eva; Gibson, Jack W; Megson, Ian L; Whitfield, Philip D; Tovmasyan, Artak; Batinic-Haberle, Ines; Murphy, Michael P; Moult, Peter R; Cobley, James NDevelopmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.Item Open Access MnSOD is implicated in accelerated wound healing upon Negative Pressure Wound Therapy (NPWT): A case in point for MnSOD mimetics as adjuvants for wound management.(Redox biology, 2019-01) Bellot, Gregory Lucien; Dong, Xiaoke; Lahiri, Amitabha; Sebastin, Sandeep Jacob; Batinic-Haberle, Ines; Pervaiz, Shazib; Puhaindran, Mark EdwardNegative Pressure Wound Therapy (NPWT), a widely used modality in the management of surgical and trauma wounds, offers clear benefits over conventional wound healing strategies. Despite the wide-ranging effects ascribed to NPWT, the precise molecular mechanisms underlying the accelerated healing supported by NPWT remains poorly understood. Notably, cellular redox status-a product of the balance between cellular reactive oxygen species (ROS) production and anti-oxidant defense systems-plays an important role in wound healing and dysregulation of redox homeostasis has a profound effect on wound healing. Here we investigated potential links between the use of NPWT and the regulation of antioxidant mechanisms. Using patient samples and a rodent model of acute injury, we observed a significant accumulation of MnSOD protein as well as higher enzymatic activity in tissues upon NPWT. As a proof of concept and to outline the important role of SOD activity in wound healing, we replaced NPWT by the topical application of a MnSOD mimetic, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+, MnE, BMX-010, AEOl10113) in the rodent model. We observed that MnE is a potent wound healing enhancer as it appears to facilitate the formation of new tissue within the wound bed and consequently advances wound closure by two days, compared to the non-treated animals. Taken together, these results show for the first time a link between NPWT and regulation of antioxidant mechanism through the maintenance of MnSOD activity. Additionally this discovery outlined the potential role of MnSOD mimetics as topical agents enhancing wound healing.Item Open Access Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes.(Science signaling, 2017-05-16) Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Sekine, Hiroki; Takahashi, Nobuyuki; Wei, Andrew Zu-Sern; Ito, Sadayoshi; Fukamizu, Akiyoshi; Zsengeller, Zsuzsanna K; Nakamura, Tomohiro; Hozawa, Atsushi; Karumanchi, S Ananth; Suzuki, Norio; Yamamoto, MasayukiPlacental activation of the renin-angiotensin system (RAS) plays a key role in the pathogenesis of preeclampsia. Reactive oxygen species (ROS) are thought to affect placental angiogenesis, which is critical for preventing preeclampsia pathology. We examined the role of ROS in preeclampsia by genetically modifying the Keap1-Nrf2 pathway, a cellular antioxidant defense system, in a mouse model of RAS-induced preeclampsia. Nrf2 deficiency would be expected to impair cellular antioxidant responses; however, Nrf2 deficiency in preeclamptic mice improved maternal and fetal survival, ameliorated intra-uterine growth retardation, and augmented oxidative DNA damage. Furthermore, the placentas of Nrf2-deficient mice had increased endothelial cell proliferation with dense vascular networks. In contrast, the placentas of preeclamptic mice with overactive Nrf2 showed repressed angiogenesis, which was associated with decreased expression of genes encoding angiogenic chemokines and cytokines. Our findings support the notion that ROS-mediated signaling is essential for maintaining placental angiogenesis in preeclampsia and may provide mechanistic insight into the negative results of clinical trials for antioxidants in preeclampsia.Item Open Access Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression.(Kidney international, 2017-02) Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Suzuki, Takafumi; Saigusa, Daisuke; Ito, Sadayoshi; Suzuki, Norio; Yamamoto, MasayukiAcute kidney injury is a devastating disease with high morbidity in hospitalized patients and contributes to the pathogenesis of chronic kidney disease. An underlying mechanism of acute kidney injury involves ischemia-reperfusion injury which, in turn, induces oxidative stress and provokes organ damage. Nrf2 is a master transcription factor that regulates the cellular response to oxidative stress. Here, we examined the role of Nrf2 in the progression of ischemia-reperfusion injury-induced kidney damage in mice using genetic and pharmacological approaches. Both global and tubular-specific Nrf2 activation enhanced gene expression of antioxidant and NADPH synthesis enzymes, including glucose-6-phosphate dehydrogenase, and ameliorated both the initiation of injury in the outer medulla and the progression of tubular damage in the cortex. Myeloid-specific Nrf2 activation was ineffective. Short-term administration of the Nrf2 inducer CDDO during the initial phase of injury ameliorated the late phase of tubular damage. This inducer effectively protected the human proximal tubular cell line HK-2 from oxidative stress-mediated cell death while glucose-6-phosphate dehydrogenase knockdown increased intracellular reactive oxygen species. These findings demonstrate that tubular hyperactivation of Nrf2 in the initial phase of injury prevents the progression of reactive oxygen species-mediated tubular damage by inducing antioxidant enzymes and NADPH synthesis. Thus, Nrf2 may be a promising therapeutic target for preventing acute kidney injury to chronic kidney disease transition.