Browsing by Subject "Arabidopsis"
Results Per Page
Sort Options
Item Open Access A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.(PLoS pathogens, 2011-10-06) Zeng, Weiqing; Brutus, Alexandre; Kremer, James M; Withers, John C; Gao, Xiaoli; Jones, A Daniel; He, Sheng YangBacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection.Item Open Access A plant genetic network for preventing dysbiosis in the phyllosphere.(Nature, 2020-04-08) Chen, Tao; Nomura, Kinya; Wang, Xiaolin; Sohrabi, Reza; Xu, Jin; Yao, Lingya; Paasch, Bradley C; Ma, Li; Kremer, James; Cheng, Yuti; Zhang, Li; Wang, Nian; Wang, Ertao; Xin, Xiu-Fang; He, Sheng YangThe aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.Item Open Access Automated Microscopy and High Throughput Image Analysis in Arabidopsis and Drosophila(2009) Mace, Daniel L.Development of a single cell into an adult organism is accomplished through an elaborate and complex cascade of spatiotemporal gene expression. While methods exist for capturing spatiotemporal expression patterns---in situ hybridization, reporter constructs, fluorescent tags---these methods have been highly laborious, and results are frequently assessed by subjective qualitative comparisons. To address these issues, methods must be developed for automating the capture of images, as well as for the normalization and quantification of the resulting data. In this thesis, I design computational approaches for high throughput image analysis which can be grouped into three main areas. First, I develop methods for the capture of high resolution images from high throughput platforms. In addition to the informatics aspect of this problem, I also devise a novel multiscale probabilistic model that allows us to identify and segment objects in an automated fashion. Second, high resolution images must be registered and normalized to a common frame of reference for cross image comparisons. To address these issues, I implement approaches for image registration using statistical shape models and non-rigid registration. Lastly, I validate the spatial expression data obtained from microscopy images to other known spatial expression methods, and develop methods for comparing and calculating the significance between spatial expression patterns. I demonstrate these methods on two model developmental organisms: Arabidopsis and Drosophila.
Item Open Access Beyond QTL cloning.(PLoS Genet, 2010-11-11) Anderson, Jill T; Mitchell-Olds, ThomasItem Open Access Ca2+-Mediated Thermal Sensing in Plants(2017) Xue, YanTemperature is an omnipresent environmental factor that shapes the growth, development and survival of plants. However, global warming has been an inevitable process and caused unusual temperature patterns across the world. As a consequence, forestry as well as agricultural plants are reportedly facing challenges from their environment. Several temperature responses in plant have been described, including short-term responses (such as acclimation) that increase tolerance towards sudden temperature stresses; as well as long-term responses (for example vernalization and flowering) that adjust growth and development to cope with seasonal temperature changes. However, the molecular mechanisms of how plants perceive temperature changes remain poorly understood. It has been observed for decades that one earliest response of plants towards low temperature is a transient increase of the cytosolic free Ca2+ concentration ([Ca2+]i). Considering the highly conserved role of [Ca2+]i increases in mediating thermal perception in animals, it has been speculated that [Ca2+]i increases may also play a role in thermal perception in plants. Nevertheless, despite intensive efforts, the molecular components responsible for cold-induced [Ca2+]i increases remain elusive. In this study, we carried out Ca2+-imaging-based forward genetic screen in Arabidopsis thaliana, isolated mutants defective in cold-induced [Ca2+]i increases (coca) and identified corresponding genes responsible for the coca phenotype through physical mapping. One of the mutants, named coca1, is highly specific to low temperature perception versus other stimuli, including osmotic, ionic and oxidative stimuli. coca1 displays compromised cold-induced [Ca2+] increases in both cotyledons and roots, as well as reduced growth fitness under ambient cool temperature. COCA1 encodes the dynamin-related protein 1A (DRP1A) and is localized on the plasma membrane. Our pharmacological studies showed that DRP1A acts upstream of plasma membrane rigidification and may mediate temperature perception by modification of membrane curvature which in turn opens Ca2+ channels. Alternatively, DRP1A may regulate endocytosis and channel activity through endocytosis signaling. Identification of coca1 as the first Arabidopsis mutant defective in cold-induced [Ca2+]i increases and DRP1A as a key player in thermal perception will greatly extend our understanding of plant adaptation to temperature changes, open up new avenues for studying Ca2+ signaling towards other stimuli and provide potential molecular genetic targets for engineering cold-resistant crops.
Item Open Access Detecting separate time scales in genetic expression data.(BMC Genomics, 2010-06-16) Orlando, David A; Brady, Siobhan M; Fink, Thomas MA; Benfey, Philip N; Ahnert, Sebastian EBACKGROUND: Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. RESULTS: We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. CONCLUSIONS: The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible.Item Open Access Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis.(Nature communications, 2017-11-27) Huot, Bethany; Castroverde, Christian Danve M; Velásquez, André C; Hubbard, Emily; Pulman, Jane A; Yao, Jian; Childs, Kevin L; Tsuda, Kenichi; Montgomery, Beronda L; He, Sheng YangEnvironmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynthesis. Global transcriptome analysis reveals a major temperature-sensitive node of SA signalling, impacting ~60% of benzothiadiazole (BTH)-regulated genes, including ICS1 and the canonical SA marker gene, PR1. Remarkably, BTH can effectively protect Arabidopsis against Pst DC3000 infection at elevated temperature despite the lack of ICS1 and PR1 expression. Our results highlight the broad impact of a major climate condition on the enigmatic molecular interplay between temperature, SA defence and function of a central bacterial virulence system in the context of a widely studied susceptible plant-pathogen interaction.Item Open Access Dual transcriptomic analysis reveals metabolic changes associated with differential persistence of human pathogenic bacteria in leaves of Arabidopsis and lettuce.(G3 (Bethesda, Md.), 2021-12) Jacob, Cristián; Velásquez, André C; Josh, Nikhil A; Settles, Matthew; He, Sheng Yang; Melotto, MaeliUnderstanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium 14028s (STm 14028s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157:H7 and STm 14028s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 h post inoculation with STm 14028s compared to that with O157:H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 h compared to the subsequent 20 h after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.Item Open Access Ectopic Expression of OsJAZs Alters Plant Defense and Development.(International journal of molecular sciences, 2022-04) Sun, Baolong; Shang, Luyue; Li, Yang; Zhang, Qiang; Chu, Zhaohui; He, Shengyang; Yang, Wei; Ding, XinhuaA key step in jasmonic acid (JA) signaling is the ligand-dependent assembly of a coreceptor complex comprising the F-box protein COI1 and JAZ transcriptional repressors. The assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which in turn bind and repress MYC transcription factors. Many studies on JAZs have been performed in Arabidopsis thaliana, but the function of JAZs in rice is largely unknown. To systematically reveal the function of OsJAZs, in this study, we compared the various phenotypes resulting from 13 OsJAZs via ectopic expression in Arabidopsis thaliana and the phenotypes of 12 AtJAZs overexpression (OE) lines. Phylogenetic analysis showed that the 25 proteins could be divided into three major groups. Yeast two-hybrid (Y2H) assays revealed that most OsJAZ proteins could form homodimers or heterodimers. The statistical results showed that the phenotypes of the OsJAZ OE plants were quite different from those of AtJAZ OE plants in terms of plant growth, development, and immunity. As an example, compared with other JAZ OE plants, OsJAZ11 OE plants exhibited a JA-insensitive phenotype and enhanced resistance to Pst DC3000. The protein stability after JA treatment of OsJAZ11 emphasized the specific function of the protein. This study aimed to explore the commonalities and characteristics of different JAZ proteins functions from a genetic perspective, and to screen genes with disease resistance value. Overall, the results of this study provide insights for further functional analysis of rice JAZ family proteins.Item Open Access Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis.(Plant Physiol, 2011-11) Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, MikikoSHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.Item Open Access Germination Responses to Vegetation in Maternal and Progeny Environments(2016-04-25) Schieder, George IVThe conditions in which a seed germinates is crucial to the survival and fitness of the plant. The ability to regulate germination given certain conditions is thus extremely important. This research examines the plastic germination responses to neighbor-associated light cues in Arabidopsis thaliana within a natural population. Our results show that light-induced germination responses of seeds from different maternal lineages within a natural population are largely uniform in direction. Although seeds exhibited dormancy loss with after-ripening, seeds imbibed under a canopy had lower germination proportions than those imbibed under white light. With respect to maternal environment, our results associate higher germination proportions with denser, more crowded maternal canopies. The effect of these maternal light cues on germination were most apparent during periods of high dormancy, suggesting that seeds become less selective over time as they after-ripen. Interestingly, the maternal and progeny cues are diametric to each other, with maternal cues seeming to encourage germination among neighbors while progeny cues respond negatively to canopies.Item Open Access Information processing without brains--the power of intercellular regulators in plants.(Development, 2010-04) Busch, Wolfgang; Benfey, Philip NPlants exhibit different developmental strategies than animals; these are characterized by a tight linkage between environmental conditions and development. As plants have neither specialized sensory organs nor a nervous system, intercellular regulators are essential for their development. Recently, major advances have been made in understanding how intercellular regulation is achieved in plants on a molecular level. Plants use a variety of molecules for intercellular regulation: hormones are used as systemic signals that are interpreted at the individual-cell level; receptor peptide-ligand systems regulate local homeostasis; moving transcriptional regulators act in a switch-like manner over small and large distances. Together, these mechanisms coherently coordinate developmental decisions with resource allocation and growth.Item Open Access Intergenic and genic sequence lengths have opposite relationships with respect to gene expression.(PLoS One, 2008) Colinas, Juliette; Schmidler, Scott C; Bohrer, Gil; Iordanov, Borislav; Benfey, Philip NEukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression.Item Open Access Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.(Nature, 2010-11) Sheard, Laura B; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A; Zheng, NingJasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved α-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.Item Open Access Linnemannia elongata (Mortierellaceae) stimulates Arabidopsis thaliana aerial growth and responses to auxin, ethylene, and reactive oxygen species.(PloS one, 2022-01) Vandepol, Natalie; Liber, Julian; Yocca, Alan; Matlock, Jason; Edger, Patrick; Bonito, GregoryHarnessing the plant microbiome has the potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses, while also relieving economic and environmental costs of crop production. While previous studies have gained valuable insights into the underlying genetics facilitating plant-fungal interactions, these have largely been skewed towards certain fungal clades (e.g. arbuscular mycorrhizal fungi). Several different phyla of fungi have been shown to positively impact plant growth rates, including Mortierellaceae fungi. However, the extent of the plant growth promotion (PGP) phenotype(s), their underlying mechanism(s), and the impact of bacterial endosymbionts on fungal-plant interactions remain poorly understood for Mortierellaceae. In this study, we focused on the symbiosis between soil fungus Linnemannia elongata (Mortierellaceae) and Arabidopsis thaliana (Brassicaceae), as both organisms have high-quality reference genomes and transcriptomes available, and their lifestyles and growth requirements are conducive to research conditions. Further, L. elongata can host bacterial endosymbionts related to Mollicutes and Burkholderia. The role of these endobacteria on facilitating fungal-plant associations, including potentially further promoting plant growth, remains completely unexplored. We measured Arabidopsis aerial growth at early and late life stages, seed production, and used mRNA sequencing to characterize differentially expressed plant genes in response to fungal inoculation with and without bacterial endosymbionts. We found that L. elongata improved aerial plant growth, seed mass and altered the plant transcriptome, including the upregulation of genes involved in plant hormones and "response to oxidative stress", "defense response to bacterium", and "defense response to fungus". Furthermore, the expression of genes in certain phytohormone biosynthetic pathways were found to be modified in plants treated with L. elongata. Notably, the presence of Mollicutes- or Burkholderia-related endosymbionts in Linnemannia did not impact the expression of genes in Arabidopsis or overall growth rates. Together, these results indicate that beneficial plant growth promotion and seed mass impacts of L. elongata on Arabidopsis are likely driven by plant hormone and defense transcription responses after plant-fungal contact, and that plant phenotypic and transcriptional responses are independent of whether the fungal symbiont is colonized by Mollicutes or Burkholderia-related endohyphal bacteria.Item Open Access Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters.(BMC plant biology, 2011-01) Champigny, Marc J; Shearer, Heather; Mohammad, Asif; Haines, Karen; Neumann, Melody; Thilmony, Roger; He, Sheng Yang; Fobert, Pierre; Dengler, Nancy; Cameron, Robin KBACKGROUND: Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. RESULTS: DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. CONCLUSIONS: Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.Item Open Access Minimum Requirements for Changing and Maintaining Cell Fate in the Arabidopsis Root(2018) Drapek, Colleen EA cell’s trajectory from stem cell to differentiation, while often portrayed as a linear progression, is best described as a network that produces a mature state through several pathways acting together. There are few examples that describe gene regulatory network changes during the entire trajectory of cell differentiation. The goal of my project was to define the gene regulatory network required for a stem cell to become a differentiated cell in the Arabidopsis thaliana root. The root is a powerful model for identifying basic principles of differentiation. Plant cells do not migrate therefore entire lineages from stem cell to mature progeny are spatially confined. Furthermore, the root displays indeterminate growth, facilitating the study of many different developmental stages at a single time. One cell type of the root, the endodermis, is particularly suitable for study because the molecular components required for its formation and terminal differentiation are established. In order to understand the path from stem cell to differentiated cell in the endodermis, we asked what transcription factors are sufficient to program a non-native cell-type into endodermis. Our results show the transcription factors SHORTROOT and MYB36 have limited ability to reprogram a non-native cell-type (the epidermis) and that this reprogramming is reversible in the absence of additional cues. The stele-derived signaling peptide CIF2 stabilizes SHORTROOT-induced reprogramming. The outcome is a partially impermeable barrier deposited in the sub-epidermal cell layer that has a transcriptional signature similar to endodermis. The induction mechanism depends on MYB36 and CIF2’s receptor, but may be independent of the transcription factor SCARECROW. These results highlight a non cell-autonomous induction mechanism for endodermis that resembles differentiation in many animal systems.
Item Open Access NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches.(Nature communications, 2019-06-14) Yang, Emily J; Yoo, Chan Yul; Liu, Jiangxin; Wang, He; Cao, Jun; Li, Fay-Wei; Pryer, Kathleen M; Sun, Tai-Ping; Weigel, Detlef; Zhou, Pei; Chen, MengPhytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs). PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen in Arabidopsis that identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling for PhAPG activation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex for PhAPG transcription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes control PhAPG expression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins.Item Open Access O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis.(Genes & development, 2016-01) Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M; Maitra, Sushmit; Thomas, Stephen G; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F; Olszewski, Neil E; Sun, Tai-PingThe DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.Item Open Access Oxicam-type non-steroidal anti-inflammatory drugs inhibit NPR1-mediated salicylic acid pathway.(Nature communications, 2021-12) Ishihama, Nobuaki; Choi, Seung-Won; Noutoshi, Yoshiteru; Saska, Ivana; Asai, Shuta; Takizawa, Kaori; He, Sheng Yang; Osada, Hiroyuki; Shirasu, KenNonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.