Browsing by Subject "Arachidonic Acid"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Immunomodulatory lipid mediator profiling of cerebrospinal fluid following surgery in older adults.(Scientific reports, 2021-02-04) Terrando, Niccolò; Park, John J; Devinney, Michael; Chan, Cliburn; Cooter, Mary; Avasarala, Pallavi; Mathew, Joseph P; Quinones, Quintin J; Maddipati, Krishna Rao; Berger, Miles; MADCO-PC Study TeamArachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) derived lipids play key roles in initiating and resolving inflammation. Neuro-inflammation is thought to play a causal role in perioperative neurocognitive disorders, yet the role of these lipids in the human central nervous system in such disorders is unclear. Here we used liquid chromatography-mass spectrometry to quantify AA, DHA, and EPA derived lipid levels in non-centrifuged cerebrospinal fluid (CSF), centrifuged CSF pellets, and centrifuged CSF supernatants of older adults obtained before, 24 h and 6 weeks after surgery. GAGE analysis was used to determine AA, DHA and EPA metabolite pathway changes over time. Lipid mediators derived from AA, DHA and EPA were detected in all sample types. Postoperative lipid mediator changes were not significant in non-centrifuged CSF (p > 0.05 for all three pathways). The AA metabolite pathway showed significant changes in centrifuged CSF pellets and supernatants from before to 24 h after surgery (p = 0.0000247, p = 0.0155 respectively), from before to 6 weeks after surgery (p = 0.0000497, p = 0.0155, respectively), and from 24 h to 6 weeks after surgery (p = 0.0000499, p = 0.00363, respectively). These findings indicate that AA, DHA, and EPA derived lipids are detectable in human CSF, and the AA metabolite pathway shows postoperative changes in centrifuged CSF pellets and supernatants.Item Open Access Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis.(Traffic (Copenhagen, Denmark), 2011-07) Lee, Sang-Hyun; Schneider, Claus; Higdon, Ashlee N; Darley-Usmar, Victor M; Chung, Chang YMicroglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.