Browsing by Subject "Arecaceae"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.(PloS one, 2015-01) Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, JeffreyOur society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.Item Open Access The global abundance of tree palms(Global Ecology and Biogeography, 2020-09-01) Muscarella, R; Emilio, T; Phillips, OL; Lewis, SL; Slik, F; Baker, WJ; Couvreur, TLP; Eiserhardt, WL; Svenning, JC; Affum-Baffoe, K; Aiba, SI; de Almeida, EC; de Almeida, SS; de Oliveira, EA; Álvarez-Dávila, E; Alves, LF; Alvez-Valles, CM; Carvalho, FA; Guarin, FA; Andrade, A; Aragão, LEOC; Murakami, AA; Arroyo, L; Ashton, PS; Corredor, GAA; Baker, TR; de Camargo, PB; Barlow, J; Bastin, JF; Bengone, NN; Berenguer, E; Berry, N; Blanc, L; Böhning-Gaese, K; Bonal, D; Bongers, F; Bradford, M; Brambach, F; Brearley, FQ; Brewer, SW; Camargo, JLC; Campbell, DG; Castilho, CV; Castro, W; Catchpole, D; Cerón Martínez, CE; Chen, S; Chhang, P; Cho, P; Chutipong, W; Clark, C; Collins, M; Comiskey, JA; Medina, MNC; Costa, FRC; Culmsee, H; David-Higuita, H; Davidar, P; del Aguila-Pasquel, J; Derroire, G; Di Fiore, A; Van Do, T; Doucet, JL; Dourdain, A; Drake, DR; Ensslin, A; Erwin, T; Ewango, CEN; Ewers, RM; Fauset, S; Feldpausch, TR; Ferreira, J; Ferreira, LV; Fischer, M; Franklin, J; Fredriksson, GM; Gillespie, TW; Gilpin, M; Gonmadje, C; Gunatilleke, AUN; Hakeem, KR; Hall, JS; Hamer, KC; Harris, DJ; Harrison, RD; Hector, A; Hemp, A; Herault, B; Pizango, CGH; Coronado, ENH; Hubau, W; Hussain, MS; Ibrahim, FH; Imai, N; Joly, CA; Joseph, S; Anitha, K; Kartawinata, K; Kassi, J; Killeen, TJAim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.