Browsing by Subject "Arrhythmia"
- Results Per Page
- Sort Options
Item Open Access Association of Wolff-Parkinson-White With Left Ventricular Noncompaction Cardiomyopathy in Children.(Journal of cardiac failure, 2019-12) Howard, Taylor S; Valdes, Santiago O; Hope, Kyle D; Morris, Shaine A; Landstrom, Andrew P; Schneider, Andrew E; Miyake, Christina Y; Denfield, Susan W; Pignatelli, Ricardo H; Wang, Yunfei; Kim, Jeffrey JBACKGROUND:Wolff-Parkinson-White (WPW) has been associated with left ventricular noncompaction (LVNC) in children. Little is known about the prevalence of this association, clinical outcomes, and treatment options. METHODS:Retrospective review of subjects with LVNC. LVNC was defined by established criteria; those with congenital heart disease were excluded. Electrocardiograms (ECGs) were reviewed for presence of pre-excitation. Outcomes were compared between those with isolated LVNC and those with WPW and LVNC. RESULTS:A total of 348 patients with LVNC were identified. Thirty-eight (11%) were found to have WPW pattern on ECG, and 84% of those with WPW and LVNC had cardiac dysfunction. In Kaplan-Meier analysis, there was significantly lower freedom from significant dysfunction (ejection fraction ≤ 40%) among those with WPW and LVNC (P < .001). Further analysis showed a higher risk of developing significant dysfunction in patients with WPW and LVNC versus LVNC alone (hazard ratio 4.64 [2.79, 9.90]). Twelve patients underwent an ablation procedure with an acute success rate of 83%. Four patients with cardiac dysfunction were successfully ablated, 3 having improvement in function. CONCLUSION:WPW is common among children with LVNC and is associated with cardiac dysfunction. Ablation therapy can be safely and effectively performed and may result in improvement in function.Item Open Access Augmentations vs. Restoration: A computational study of the effects of bacterial sodium channels on cardiac conduction.(2022) Needs, Daniel AllenCardiac arrhythmias, including ventricular tachycardia, ventricular fibrillation, and atrial fibrillation, are associated with ectopic triggers such as those resulting from afterdepolarizations and structural changes within the cardiac changes. While ectopic triggers can be dealt with via radio frequency ablation, structural causes of arrhythmia, such as microscale source-load mismatches, do not have available treatments. Augmentation of cardiomyocytes with exogenous sodium channels such as Nav1.4 or prokaryotic voltage-gated sodium channels, or BacNavs, have shown promise for potentially alleviating these arrhythmias. However, due to size constraints, only the BacNavs are available for the highest efficiency viral vectors for stable transduction. Limitations in the ability to test these channels in adult mammalian cardiac tissue, particularly tissue with source-load mismatches, have led to a lack of understanding about BacNav’s therapeutic value. This dissertation aims to build models of engineered BacNavs and compare their impact in simulated diseased and healthy cardiac tissue with increases of the endogenous Nav1.5 current to probe mechanisms for therapy.Patch clamp data was analyzed to derive steady-state values and kinetics for the activation and inactivation gating of the BacNavs using techniques dating back to Hodgkin and Huxley’s squid axon model. Models using a cubic activation function and only a single slow inactivation channel were best able to replicate the data, including action potential traces and restitution curves for both action potential duration and conduction velocity. The single slow inactivation channel matches what has been observed in crystallography studies of other BacNav channels. Including the derived BacNav model into membrane models for guinea pig and human ventricular myocytes revealed general trends of action potential duration reduction, action potential amplitude increase, and increases in conduction velocity and upstroke velocity. The action potential duration and amplitude trends were more significant for BacNav than Nav1.5, but the endogenous channel was superior for conduction velocity increase. These effects existed despite different responses in relative and absolute current densities between the two membrane models. Despite evidence that late sodium current can lead to afterdepolarizations, BacNav did not increase susceptibility to them in vulnerable midmyocardial cells except at extremely high current densities. Finally, reductions in action potential duration removed alternans present in the restitution curves for single cells. To study how BacNav affected arrhythmias, BacNav was incorporated into one-dimensional cables and two-dimensional tissues with source-load mismatches present, premature stimuli that could induce unidirectional block or channelopathies such as mutations leading to Brugada syndrome. BacNavs outperformed the endogenous channel in source-load mismatches due to increased action potential amplitude and slower inactivation kinetics. These conclusions were stable to spatial heterogeneity in the treatment. It was also able to rescue Brugada syndrome in a dose-dependent manner and narrow the vulnerable window to unidirectional block for one-dimensional cables. In two dimensions, Nav1.5 had a smaller window to spiral wave induction but experienced wave breaks and multiple wavelets, whereas rotors with BacNav-treated cells were stable. These findings help generate hypotheses to be tested experimentally and further refine the model. Further studies may uncover engineering principles for designing optimal sodium channels for specific pathologies.
Item Open Access Bridging Scales: How Microstructural Features Impact Macroscopic Cardiac Propagation(2018) Gokhale, Tanmay AnilCardiac arrhythmias such as atrial fibrillation and ventricular tachycardia are closely associated with microscopic fibrotic changes in cardiac structure that result in a heterogeneous myocardium. While the incidence of fibrosis is correlated with arrhythmia burden and recurrence, the mechanisms linking the two remain poorly understood. Previous experimental and simulation studies have identified changes in local conduction due to micron-scale structural heterogeneities. However, because of the limited ability to simultaneously study conduction over a range of spatial scales, it remains unclear how numerous microheterogeneities act in aggregate to alter conduction on the macroscopic scale. The overall objective of this dissertation is to elucidate and characterize the effect of microfibrosis on cardiac conduction, through the use of computational models and directly paired experimental studies.
The impact of fibrotic collagen deposition on reentrant conduction was first examined in a model of cardiac tissue. The presence of collagenous septa was shown to prolong the cycle length of reentry; the magnitude of reentry prolongation is correlated with the overall degree of fibrosis and the length of individual collagenous septa. Mechanistically, cycle length prolongation is caused by lengthening of the reentrant tip trajectory and alteration of restitution properties. An equivalent homogenized model of fibrosis is unable to recapitulate the observed cycle length prolongation, suggesting that the details of the microstructure greatly impact the observed macroscale behavior. A hybrid model generated by adding discrete heterogeneities to the coarse, homogenized model is able to partially reproduce cycle length prolongation by replicating the lengthened tip trajectory.
In order to examine the mechanisms by which cardiac microstructure influences global conduction, a new framework for paired computational and experimental studies using the engineered-excitable Ex293 cell line was developed. The Ex293 mathematical model incorporates several measures of variation in cellular and tissue electrophysiological properties, and is novel in its use of stochastic variation in a multidimensional model of tissue. Replicating the range of experimentally observed single-cell and macro-scale behavior requires introducing ionic conductance variation between individual cells and between tissues, as well as conductivity variation between tissues.
This framework was then utilized for paired studies in a geometry of idealized fibrosis to examine fibrosis-induced changes in micro- and macro-scale behavior. The presence of microscopic heterogeneities slows conduction and alters the curvature of the macroscopic wavefront. On the microscale, branching of tissue around heterogeneities leads to conduction slowing due to imbalances of electrical source and load, while wavefront collisions at sites of tissue convergence lead to acceleration of propagation. The observed macroscopic behavior is directly attributable to the combination of these microscopic effects and the tortuosity of propagation around heterogeneities. Under diseased conditions involving reduced excitability, alteration of these microscale behaviors leads to reversal of changes in wavefront curvature.
These findings advance our knowledge of the role of myocardial micro-heterogeneities in conduction. Further application of these techniques to examine how the effects of microstructure are dynamically modulated may help improve our understanding of the factors giving rise to cardiac arrhythmia.
Item Open Access Intravenous sotalol for the management of postoperative junctional ectopic tachycardia.(HeartRhythm case reports, 2018-08) Valdés, Santiago O; Landstrom, Andrew P; Schneider, Andrew E; Miyake, Christina Y; Uz, Caridad M de la; Kim, Jeffrey J