Browsing by Subject "Artemisinins"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme.(Malar J, 2011-10-26) Smith, Nathan; Obala, Andrew; Simiyu, Chrispinus; Menya, Diana; Khwa-Otsyula, Barasa; O'Meara, Wendy PrudhommeBACKGROUND: Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT). One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. METHODS: In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered). RESULTS: The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers). More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57%) than ACT (44%). Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL). No retailers had chloroquine in stock and only five were selling artemisinin monotherapy. The mean price of any brand of AL, the recommended first-line drug in Kenya, was $2.7 USD. Brands purchased under the AMFm programme cost 40% less than non-AMFm brands. Artemisinin monotherapies cost on average more than twice as much as AMFm-brand AL. SP cost only $0.5, a fraction of the price of ACT. CONCLUSIONS: AMFm-subsidized anti-malarials are considerably less expensive than unsubsidized AL, but the price difference between effective and ineffective therapies is still large.Item Open Access Improving rational use of ACTs through diagnosis-dependent subsidies: Evidence from a cluster-randomized controlled trial in western Kenya.(PLoS medicine, 2018-07-17) Prudhomme O'Meara, Wendy; Menya, Diana; Laktabai, Jeremiah; Platt, Alyssa; Saran, Indrani; Maffioli, Elisa; Kipkoech, Joseph; Mohanan, Manoj; Turner, Elizabeth LBACKGROUND:More than half of artemisinin combination therapies (ACTs) consumed globally are dispensed in the retail sector, where diagnostic testing is uncommon, leading to overconsumption and poor targeting. In many malaria-endemic countries, ACTs sold over the counter are available at heavily subsidized prices, further contributing to their misuse. Inappropriate use of ACTs can have serious implications for the spread of drug resistance and leads to poor outcomes for nonmalaria patients treated with incorrect drugs. We evaluated the public health impact of an innovative strategy that targets ACT subsidies to confirmed malaria cases by coupling free diagnostic testing with a diagnosis-dependent ACT subsidy. METHODS AND FINDINGS:We conducted a cluster-randomized controlled trial in 32 community clusters in western Kenya (population approximately 160,000). Eligible clusters had retail outlets selling ACTs and existing community health worker (CHW) programs and were randomly assigned 1:1 to control and intervention arms. In intervention areas, CHWs were available in their villages to perform malaria rapid diagnostic tests (RDTs) on demand for any individual >1 year of age experiencing a malaria-like illness. Malaria RDT-positive individuals received a voucher for a discount on a quality-assured ACT, redeemable at a participating retail medicine outlet. In control areas, CHWs offered a standard package of health education, prevention, and referral services. We conducted 4 population-based surveys-at baseline, 6 months, 12 months, and 18 months-of a random sample of households with fever in the last 4 weeks to evaluate predefined, individual-level outcomes. The primary outcome was uptake of malaria diagnostic testing at 12 months. The main secondary outcome was rational ACT use, defined as the proportion of ACTs used by test-positive individuals. Analyses followed the intention-to-treat principle using generalized estimating equations (GEEs) to account for clustering with prespecified adjustment for gender, age, education, and wealth. All descriptive statistics and regressions were weighted to account for sampling design. Between July 2015 and May 2017, 32,404 participants were tested for malaria, and 10,870 vouchers were issued. A total of 7,416 randomly selected participants with recent fever from all 32 clusters were surveyed. The majority of recent fevers were in children under 18 years (62.9%, n = 4,653). The gender of enrolled participants was balanced in children (49.8%, n = 2,318 boys versus 50.2%, n = 2,335 girls), but more adult women were enrolled than men (78.0%, n = 2,139 versus 22.0%, n = 604). At baseline, 67.6% (n = 1,362) of participants took an ACT for their illness, and 40.3% (n = 810) of all participants took an ACT purchased from a retail outlet. At 12 months, 50.5% (n = 454) in the intervention arm and 43.4% (n = 389) in the control arm had a malaria diagnostic test for their recent fever (adjusted risk difference [RD] = 9 percentage points [pp]; 95% CI 2-15 pp; p = 0.015; adjusted risk ratio [RR] = 1.20; 95% CI 1.05-1.38; p = 0.015). By 18 months, the ARR had increased to 1.25 (95% CI 1.09-1.44; p = 0.005). Rational use of ACTs in the intervention area increased from 41.7% (n = 279) at baseline to 59.6% (n = 403) and was 40% higher in the intervention arm at 18 months (ARR 1.40; 95% CI 1.19-1.64; p < 0.001). While intervention effects increased between 12 and 18 months, we were not able to estimate longer-term impact of the intervention and could not independently evaluate the effects of the free testing and the voucher on uptake of testing. CONCLUSIONS:Diagnosis-dependent ACT subsidies and community-based interventions that include the private sector can have an important impact on diagnostic testing and population-wide rational use of ACTs. Targeting of the ACT subsidy itself to those with a positive malaria diagnostic test may also improve sustainability and reduce the cost of retail-sector ACT subsidies. TRIAL REGISTRATION:ClinicalTrials.gov NCT02461628.