Browsing by Subject "Articular cartilage"
Results Per Page
Sort Options
Item Open Access Electrospun Scaffolds for Cartilage Tissue Engineering: Methods to Affect Anisotropy, Material and Cellular Infiltration(2011) Garrigues, Ned WilliamThe aim of this dissertation was to develop new techniques for producing electrospun scaffolds for use in the tissue engineering of articular cartilage. We developed a novel method of imparting mechanical anisotropy to electrospun scaffolds that allowed the production of a single, cohesive scaffold with varying directions of anisotropy in different layers by employing insulating masks to control the electric field. We improved the quantification of fiber alignment, discovering that surface fibers in isotropic scaffolds show similar amounts of fiber alignment as some types of anisotropic scaffolds, and that cells align themselves in response to this subtle fiber alignment. We improved previous methods to improve cellular infiltration into tissue engineering scaffolds. Finally, we produced a new material with chondrogenic potential consisting of native unpurified cartilage which was electrospun as a composite with a synthetic polymer. This work provided advances in three major areas of tissue engineering: scaffold properties, cell-scaffold interaction, and novel materials.
Item Open Access Mechanobiology of the meniscus.(J Biomech, 2015-06-01) McNulty, Amy L; Guilak, FarshidThe meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus.Item Open Access The Role of Tumor Necrosis Factor-Stimulated Gene 6 Protein (TSG-6) in Osteoarthritis(2017) Chou, ChinghengIn our studies, we developed a novel method for extracting high quality nucleic acid from joint tissue that relies on finely grinding the desired regions of the knee tibial plateau under liquid nitrogen. By controlling the depth of drill penetration we could reliably separate and isolate articular cartilage and site-matched subchondral bone with high fidelity. We also set up a model system based on specific regions of interest within a joint corresponding to a gradient of disease severities; this system can be used to represent early (relative intact), intermediate (mild to moderate damaged) and late (severe damaged) disease within the knee joints. We performed microarray profiling to identify disease relevant genes and pathways associated with knee OA progression in human articular cartilage. Tumor Necrosis Factor-Stimulated Gene 6 (TSG-6) was identified to be significantly associated with OA progression and validated in both medial and lateral compartment dominant OA samples.
Next, we explored mechanisms underlying the association of TSG-6 with OA progression. We characterized the effects of TSG-6, in the presence and absence of inter-alpha-inhibitor (IαI), on anti-plasmin activity, evaluated for the in vivo presence of heavy chains (HCs) in cartilage matrix (evidence of TSG-6 activity), evaluated the gene expression of IαI components and TSG-6 in cartilage, and explored effects of TSG-6 on matrix assembly in vitro.
TSG-6 synergized with IαI to inhibit plasmin activity by 39.3%; the presence of HA (full length or fragments) reduced the inhibitory effect. TSG-6 activity was highly correlated (R = 0.6392, P = 0.0006) with TSG-6 protein concentrations in synovial fluid (SF) from knee OA joints. TSG-6 protein and RNA were highly expressed in damaged cartilage from knee tibial and meniscal cartilage and chondrocytes treated with cytokines. The components of the IαI complex, ITIH1, ITIH2, and AMBP genes were either not expressed or expressed at a low level in intact or damaged cartilage of OA joints and chondrocytes. Rate limiting amounts of IαI were demonstrated by spiking-in exogenous IαI into cartilage extracts. This suggested that the source of IαI for TSG-6 mediated HC transfer onto damaged cartilage is likely the synovial fluid and not the cartilage itself. Interestingly, SF TSG-6 activity was significantly positively associated with the inflammatory reactants TIMP-1, A2M, VEGF, VCAM-1, ICAM, MMP-3, TNFR2, cytokines IL-6, IL-8, IL-18, quantity of activated macrophages in synovium and soluble macrophage-associated marker CD14 and number of low molecular weight (pro-inflammatory) hyaluronan (HA) molecules. Moreover, TSG-6 impaired HA-aggrecan assembly, but TSG-6 mediated HA-HC formation reduced this negative effect.
IαI enhances the anti-protease activity of TSG6, preserves matrix assembly capabilities by enabling TSG6 transfer of HC to HA and mitigates inhibition of matrix assembly by TSG-6. During OA progression, inflammatory mediators increase production of TSG-6, but IαI originating outside cartilage acting in a rate-limiting manner and may only moderately interact with TSG-6 released from damaged cartilage. Along with previous work, these findings suggest that the net beneficial effect of TSG-6 is therefore dependent upon the availability of IαI in knee OA.