Browsing by Subject "Aspergillus fumigatus"
- Results Per Page
- Sort Options
Item Open Access A challenging case of invasive pulmonary aspergillosis after near-drowning: a case report and literature review.(Infectious diseases in clinical practice (Baltimore, Md.), 2015-09) Jenks, Jeffrey D; Preziosi, MichaelNear-drowning, a relatively common event, is often complicated by subsequent pneumonia. While endogenous and exogenous bacteria are typical pathogens, rarely fungi are as well. We report a complicated case of invasive pulmonary aspergillosis in a 30-year-old man after a near-drowning event. We also review the medical literature for similar cases. All cases of invasive pulmonary aspergillosis after near-drowning reported in the literature involve Aspergillus fumigatus. The majority of cases involved submersion in stagnant water after a motor vehicle accident (MVA). Treatment varied considerably, with amphotericin B used in the majority of cases. Morbidity was considerable with prolonged hospitalization occurring in every case, and mortality occurring in fifty percent of the reported cases. Although a rare complication of near-drowning, invasive pulmonary aspergillosis can occur and lead to significant morbidity and mortality. After near-drowning A. fumigatus isolated from the respiratory tract should be assumed to be a true pathogen and treated accordingly.Item Open Access C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis.(Mucosal immunology, 2018-09) Mulligan, Jennifer K; Patel, Kunal; Williamson, Tucker; Reaves, Nicholas; Carroll, William; Stephenson, Sarah E; Gao, Peng; Drake, Richard R; Neely, Benjamin A; Tomlinson, Stephen; Schlosser, Rodney J; Atkinson, CarlChronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease with an unknown etiology. Recent studies have implicated the complement system as a potential modulator of disease immunopathology. We performed proteomic pathway enrichment analysis of differentially increased proteins, and found an enrichment of complement cascade pathways in the nasal mucus of individuals with CRSwNP as compared to control subjects. Sinonasal mucus levels of complement 3 (C3) correlated with worse subjective disease severity, whereas no significant difference in systemic C3 levels could be determined in plasma samples. Given that human sinonasal epithelial cells were the predominate sinonasal source of C3 and complement anaphylatoxin 3a (C3a) staining, we focused on their role in in vitro studies. Baseline intracellular C3 levels were higher in CRSwNP cells, and following exposure to Aspergillus fumigatus (Af) extract, they released significantly more C3 and C3a. Inhibition of complement 3a receptor (C3aR) signaling led to a decrease in Af-induced C3 and C3a release, both in vitro and in vivo. Finally, we found in vivo that C3aR deficiency or inhibition significantly reduced inflammation and CRS development in a mouse model of Af-induced CRS. These findings demonstrate that local sinonasal complement activation correlates with subjective disease severity, and that local C3aR antagonism significantly ameliorates Af-induced CRS in a rodent model.Item Open Access Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.(PLoS One, 2015) Falloon, Katie; Juvvadi, Praveen R; Richards, Amber D; Vargas-Muñiz, José M; Renshaw, Hilary; Steinbach, William JInvasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.Item Open Access Cryptococcus Neoformans Interactions with Surfactant Proteins: Implications for Innate Pulmonary Immunity(2009) Geunes-Boyer, Scarlett Gabriel ThoreauConcurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Although improvements in antifungal therapy have advanced the treatment of cryptococcosis, the mortality rate is approximately 12% in medically advanced countries, and approaches 50% in less developed regions. Additionally, C. neoformans can cause infection in seemingly healthy individuals, elevating its status as a primary human pathogen. Although numerous studies have examined virulence properties, less is understood regarding host immune factors in the lungs during early stages of fungal infection. In the present thesis studies, I examined the roles played by pulmonary surfactant proteins in response to C. neoformans in vitro and in vivo. We demonstrate that SP-D, but not SP-A, binds to the yeast and increases phagocytosis of poorly encapsulated yeast cells by macrophages, yet concomitantly protects the pathogenic microbes from macrophage-mediated defense mechanisms. Furthermore, we show that SP-D functions as risk factor in vivo by protecting the yeast cells against oxidant species and thus facilitating disease progression. The results of these studies provide a new paradigm on the role played by surfactant protein D during host responses to C. neoformans and, consequently, impart insight into potential future treatment strategies for cryptococcosis.
Item Open Access Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism.(PloS one, 2017-01) Mulligan, Jennifer K; Mulligan, Jennifer K; Pasquini, Whitney N; Carroll, William W; Williamson, Tucker; Reaves, Nicholas; Patel, Kunal J; Mappus, Elliott; Schlosser, Rodney J; Atkinson, CarlRationale
Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS).Methods
Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined.Results
Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A.Conclusions
VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.Item Open Access FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus.(Biochemical and biophysical research communications, 2020-05) Juvvadi, Praveen R; Bobay, Benjamin G; Gobeil, Sophie MC; Cole, D Christopher; Venters, Ronald A; Heitman, Joseph; Spicer, Leonard D; Steinbach, William JThe 12-kDa FK506-binding protein (FKBP12) is the target of the commonly used immunosuppressive drug FK506. The FKBP12-FK506 complex binds to calcineurin and inhibits its activity, leading to immunosuppression and preventing organ transplant rejection. Our recent characterization of crystal structures of FKBP12 proteins in pathogenic fungi revealed the involvement of the 80's loop residue (Pro90) in the active site pocket in self-substrate interaction providing novel evidence on FKBP12 dimerization in vivo. The 40's loop residues have also been shown to be involved in reversible dimerization of FKBP12 in the mammalian and yeast systems. To understand how FKBP12 dimerization affects FK506 binding and influences calcineurin function, we generated Aspergillus fumigatus FKBP12 mutations in the 40's and 50's loop (F37 M/L; W60V). Interestingly, the mutants exhibited variable FK506 susceptibility in vivo indicating differing dimer strengths. In comparison to the 80's loop P90G and V91C mutants, the F37 M/L and W60V mutants exhibited greater FK506 resistance, with the F37M mutation showing complete loss in calcineurin binding in vivo. Molecular dynamics and pulling simulations for each dimeric FKBP12 protein revealed a two-fold increase in dimer strength and significantly higher number of contacts for the F37M, F37L, and W60V mutations, further confirming their varying degree of impact on FK506 binding and calcineurin inhibition in vivo.Item Open Access Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents.(Nature communications, 2019-09) Juvvadi, Praveen R; Fox, David; Bobay, Benjamin G; Hoy, Michael J; Gobeil, Sophie MC; Venters, Ronald A; Chang, Zanetta; Lin, Jackie J; Averette, Anna Floyd; Cole, D Christopher; Barrington, Blake C; Wheaton, Joshua D; Ciofani, Maria; Trzoss, Michael; Li, Xiaoming; Lee, Soo Chan; Chen, Ying-Lien; Mutz, Mitchell; Spicer, Leonard D; Schumacher, Maria A; Heitman, Joseph; Steinbach, William JCalcineurin is important for fungal virulence and a potential antifungal target, but compounds targeting calcineurin, such as FK506, are immunosuppressive. Here we report the crystal structures of calcineurin catalytic (CnA) and regulatory (CnB) subunits complexed with FK506 and the FK506-binding protein (FKBP12) from human fungal pathogens (Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Coccidioides immitis). Fungal calcineurin complexes are similar to the mammalian complex, but comparison of fungal and human FKBP12 (hFKBP12) reveals conformational differences in the 40s and 80s loops. NMR analysis, molecular dynamic simulations, and mutations of the A. fumigatus CnA/CnB-FK506-FKBP12-complex identify a Phe88 residue, not conserved in hFKBP12, as critical for binding and inhibition of fungal calcineurin. These differences enable us to develop a less immunosuppressive FK506 analog, APX879, with an acetohydrazine substitution of the C22-carbonyl of FK506. APX879 exhibits reduced immunosuppressive activity and retains broad-spectrum antifungal activity and efficacy in a murine model of invasive fungal infection.Item Open Access Aspergillus fumigatus and aspergillosis: From basics to clinics.(Studies in mycology, 2021-09) Arastehfar, A; Carvalho, A; Houbraken, J; Lombardi, L; Garcia-Rubio, R; Jenks, JD; Rivero-Menendez, O; Aljohani, R; Jacobsen, ID; Berman, J; Osherov, N; Hedayati, MT; Ilkit, M; Armstrong-James, D; Gabaldón, T; Meletiadis, J; Kostrzewa, M; Pan, W; Lass-Flörl, C; Perlin, DS; Hoenigl, MThe airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.Item Open Access Myosin V Function and Regulation in the Morphogenesis of Aspergillus Fumigatus(2018) Renshaw, HilaryOver the last decade, a growing number of fungal infections of animals and plants has risen and persisted. The lack of diversity in antifungal drugs as well as rising antifungal resistance in many pathogens has exacerbated the problem. Thus there is a critical need for basic molecular understanding of fungal morphogenesis and pathogenesis to design new ways to combat these diseases.
One of the fungal infections in need of new treatments is Aspergillus fumigatus, the etiological agent of invasive aspergillosis. A. fumigatus is an obligate filamentous fungus that is commonly found in the soil and air. It generally does not cause invasive disease in immunocompetent hosts; however immunocompromised people are at risk for invasive aspergillosis. To better understand the morphogenesis and pathogenesis of this fungus, I decided to study myosins, a group of actin-based motor proteins that are involved in myriad of integral processes in other organisms.
Through gene deletion, I revealed the importance of the class II myosin, MyoB, in septal formation and conidiation. The class V myosin, MyoE, was required for hyphal polarity, radial extension, septal frequency and conidiation. Importantly, MyoE was required for full virulence in a murine model of invasive aspergillosis. Given the importance of MyoE in critical processes such as hyphal growth and pathogenesis, I aimed to understand the molecular requirements of MyoE. Through iterative truncations of MyoE’s N-terminal tail domain, I revealed the importance of the tail domain in hyphal growth, polarity, and MyoE localization. I identified several phosphorylated residues on the MyoE protein, but mutational analysis did not reveal that any one residue was required for MyoE function. In the absence of the serine/threonine phosphatase, calcineurin, MyoE was phosphorylated at an additional residue. Mutational analysis of a residue in the tail domain revealed it was required for septal localization but not hyphal tip localization, growth, or septation.
Because MyoE is a cargo binding protein, it likely participates in several pathways that are required for growth and septation of the fungus. To identify novel roles of class V myosins, I identified the MyoE interactome using LC-MS/MS analysis. This analysis revealed several components of the COPII pathway for ER to Golgi transport, suggesting that MyoE may play a role in this protein transport system. My future work aims to understand this role.
Item Open Access Septins’ Role in Morphogenesis, Development, and Pathogenesis of the Human Fungal Pathogen Aspergillus fumigatus(2017) VargasMuniz, Jose MAspergillus fumigatus, the main etiology of invasive aspergillosis, is a leading cause of fungal mortality in immunocompromised patients. Although the incidence of invasive aspergillosis has increased in the last two decades due to a rise in the immunocompromised patient population, there is a lack of effective treatments and basic understanding of growth and disease. Septins are conserved GTPases that are involved in a myriad of cellular processes, ranging from cytokinesis to cell morphology. Here we describe the role of septins in A. fumigatus growth, development, and pathogenesis. Through gene deletion, we revealed that all 5 septin genes are dispensable for growth under basal conditions. Nonetheless, AspA, AspB, AspC, and AspE are required for regular septation and the core septins are required for conidia production. The ΔaspB strain was hypervirulent in the Galleria mellonella model of infection, while virulence was similar to the wild-type strain in our murine model of invasive aspergillosis. Deletion of aspB also lead to an increase in susceptibility to anti-cell wall agents. AspB, which under basal conditions interacts with 334 proteins, alters its protein interaction after exposure to a clinically relevant concentration of the antifungal caspofungin. A total of 69 of the basal interactants do not interact with AspB, and 54 new interactants were identified following caspofungin exposure. Of the interactants studied, only PpoA was implicated in the response to anti-cell wall agents.
Due to the pleiotropic role of AspB, we characterized how posttranslational modifications regulate AspB function. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension. Gin4, Cla4, and ParA contributes to both septation and conidiation of A. fumigatus. Deletion of cla4 and parA lead to hyperseptation, while deletion of gin4 leads to larger apical compartments that were similar in length to the ΔaspB strain. Cla4, Gin4, and ParA contribute to proper localization of AspB. Phosphoproteomic analyses show that AspB is phosphorylated at 7 residues: 5 in the GTPase domain, and 2 at C-terminus. Deletion of gin4 and cla4 did not alter the phosphorylated residues in AspB. Deletion of parA results in 2 new phosphorylation sites identified, one in the N-terminal polybasic region (T68) and one in the coil-coiled domain (S447). Mutation of T68 to glutamic acid leads to a slight increase in interseptal distances. These results demonstrate the key role of septins in response to anti-cell wall agents, as well as how phosphorylation regulates septin function in A. fumigatus.
Item Open Access 15N, 13C and 1H resonance assignments of FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus.(Biomolecular NMR assignments, 2019-04) Gobeil, Sophie MC; Bobay, Benjamin G; Spicer, Leonard D; Venters, Ronald AInvasive fungal infections are a leading cause of death in immunocompromised patients and remain difficult to treat since fungal pathogens, like mammals, are eukaryotes and share many orthologous proteins. As a result, current antifungal drugs have limited clinical value, are sometimes toxic, can adversely affect human reaction pathways and are increasingly ineffective due to emerging resistance. One potential antifungal drug, FK506, establishes a ternary complex between the phosphatase, calcineurin, and the 12-kDa peptidyl-prolyl isomerase FK506-binding protein, FKBP12. It has been well established that calcineurin, highly conserved from yeast to mammals, is necessary for invasive fungal disease and is inhibited when in complex with FK506/FKBP12. Unfortunately, FK506 is also immunosuppressive in humans, precluding its usage as an antifungal drug, especially in immunocompromised patients. Whereas the homology between human and fungal calcineurin proteins is > 80%, the human and fungal FKBP12s share 48-58% sequence identity, making them more amenable candidates for drug targeting efforts. Here we report the backbone and sidechain NMR assignments of recombinant FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus in the apo form and compare these to the backbone assignments of the FK506 bound form. In addition, we report the backbone assignments of the apo and FK506 bound forms of the Homo sapiens FKBP12 protein for evaluation against the fungal forms. These data are the first steps towards defining, at a residue specific level, the impacts of FK506 binding to fungal and mammalian FKBP12 proteins. Our data highlight differences between the human and fungal FKBP12s that could lead to the design of more selective anti-fungal drugs.Item Open Access The Protein Kinase A-Dependent Phosphoproteome of the Human Pathogen Aspergillus fumigatus Reveals Diverse Virulence-Associated Kinase Targets.(mBio, 2020-12) Shwab, E Keats; Juvvadi, Praveen R; Waitt, Greg; Shaheen, Shareef; Allen, John; Soderblom, Erik J; Bobay, Benjamin G; Asfaw, Yohannes G; Moseley, M Arthur; Steinbach, William JProtein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.