Browsing by Subject "Asymmetric Cell Division"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A miR-34a-Numb Feedforward Loop Triggered by Inflammation Regulates Asymmetric Stem Cell Division in Intestine and Colon Cancer.(Cell Stem Cell, 2016-02-04) Bu, Pengcheng; Wang, Lihua; Chen, Kai-Yuan; Srinivasan, Tara; Murthy, Preetish Kadur Lakshminarasimha; Tung, Kuei-Ling; Varanko, Anastasia Kristine; Chen, Huanhuan Joyce; Ai, Yiwei; King, Sarah; Lipkin, Steven M; Shen, XilingEmerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.Item Open Access Regulated spindle orientation buffers tissue growth in the epidermis.(eLife, 2019-10) Morrow, Angel; Underwood, Julie; Seldin, Lindsey; Hinnant, Taylor; Lechler, TerryTissue homeostasis requires a balance between progenitor cell proliferation and loss. Mechanisms that maintain this robust balance are needed to avoid tissue loss or overgrowth. Here we demonstrate that regulation of spindle orientation/asymmetric cell divisions is one mechanism that is used to buffer changes in proliferation and tissue turnover in mammalian skin. Genetic and pharmacologic experiments demonstrate that asymmetric cell divisions were increased in hyperproliferative conditions and decreased under hypoproliferative conditions. Further, active K-Ras also increased the frequency of asymmetric cell divisions. Disruption of spindle orientation in combination with constitutively active K-Ras resulted in massive tissue overgrowth. Together, these data highlight the essential roles of spindle orientation in buffering tissue homeostasis in response to perturbations.