Browsing by Subject "Auditory Cortex"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A neurophysiological study into the foundations of tonal harmony.(Neuroreport, 2009-02-18) Bergelson, Elika; Idsardi, William JOur findings provide magnetoencephalographic evidence that the mismatch-negativity response to two-note chords (dyads) is modulated by a combination of abstract cognitive differences and lower-level differences in the auditory signal. Participants were presented with series of simple-ratio sinusoidal dyads (perfect fourths and perfect fifths) in which the difference between the standard and deviant dyad exhibited an interval change, a shift in pitch space, or both. In addition, the standard-deviant pair of dyads either shared one note or both notes were changed. Only the condition that featured both abstract changes (interval change and pitch-space shift) and two novel notes showed a significantly larger magnetoencephalographic mismatch-negativity response than the other conditions in the right hemisphere. Implications for music and language processing are discussed.Item Open Access Computational inference of neural information flow networks.(PLoS Comput Biol, 2006-11-24) Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich DDetermining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.Item Open Access Distress tolerance to auditory feedback and functional connectivity with the auditory cortex.(Psychiatry research. Neuroimaging, 2018-12) Addicott, Merideth A; Daughters, Stacey B; Strauman, Timothy J; Appelbaum, L GregoryDistress tolerance is the capacity to withstand negative affective states in pursuit of a goal. Low distress tolerance may bias an individual to avoid or escape experiences that induce affective distress, but the neural mechanisms underlying the bottom-up generation of distress and its relationship to behavioral avoidance are poorly understood. During a neuroimaging scan, healthy participants completed a mental arithmetic task with easy and distress phases, which differed in cognitive demands and positive versus negative auditory feedback. Then, participants were given the opportunity to continue playing the distress phase for a financial bonus and were allowed to quit at any time. The persistence duration was the measure of distress tolerance. The easy and distress phases activated auditory cortices and fronto-parietal regions. A task-based functional connectivity analysis using the left secondary auditory cortex (i.e., planum temporale) as the seed region revealed stronger connectivity to fronto-parietal regions and anterior insula during the distress phase. The distress-related connectivity between the seed region and the left anterior insula was negatively correlated with distress tolerance. The results provide initial evidence of the role of the anterior insula as a mediating link between the bottom-up generation of affective distress and top-down behavioral avoidance of distress.Item Open Access Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.(Neuropsychologia, 2011-06) Huijbers, Willem; Pennartz, Cyriel MA; Rubin, David C; Daselaar, Sander MRemembering past events - or episodic retrieval - consists of several components. There is evidence that mental imagery plays an important role in retrieval and that the brain regions supporting imagery overlap with those supporting retrieval. An open issue is to what extent these regions support successful vs. unsuccessful imagery and retrieval processes. Previous studies that examined regional overlap between imagery and retrieval used uncontrolled memory conditions, such as autobiographical memory tasks, that cannot distinguish between successful and unsuccessful retrieval. A second issue is that fMRI studies that compared imagery and retrieval have used modality-aspecific cues that are likely to activate auditory and visual processing regions simultaneously. Thus, it is not clear to what extent identified brain regions support modality-specific or modality-independent imagery and retrieval processes. In the current fMRI study, we addressed this issue by comparing imagery to retrieval under controlled memory conditions in both auditory and visual modalities. We also obtained subjective measures of imagery quality allowing us to dissociate regions contributing to successful vs. unsuccessful imagery. Results indicated that auditory and visual regions contribute both to imagery and retrieval in a modality-specific fashion. In addition, we identified four sets of brain regions with distinct patterns of activity that contributed to imagery and retrieval in a modality-independent fashion. The first set of regions, including hippocampus, posterior cingulate cortex, medial prefrontal cortex and angular gyrus, showed a pattern common to imagery/retrieval and consistent with successful performance regardless of task. The second set of regions, including dorsal precuneus, anterior cingulate and dorsolateral prefrontal cortex, also showed a pattern common to imagery and retrieval, but consistent with unsuccessful performance during both tasks. Third, left ventrolateral prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities.Item Open Access Single neurons may encode simultaneous stimuli by switching between activity patterns.(Nature communications, 2018-07-13) Caruso, Valeria C; Mohl, Jeff T; Glynn, Christopher; Lee, Jungah; Willett, Shawn M; Zaman, Azeem; Ebihara, Akinori F; Estrada, Rolando; Freiwald, Winrich A; Tokdar, Surya T; Groh, Jennifer MHow the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.