Browsing by Subject "Auditory Threshold"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Auditory morphology and hearing sensitivity in fossil New World monkeys.(Anatomical record (Hoboken, N.J. : 2007), 2010-10) Coleman, M; Kay, RF; Colbert, MWIn recent years it has become possible to investigate the hearing capabilities in fossils by analogy with studies in living taxa that correlate the bony morphology of the auditory system with hearing sensitivity. In this analysis, we used a jack-knife procedure to test the accuracy of one such study that examined the functional morphology of the primate auditory system and we found that low-frequency hearing (sound pressure level at 250 Hz) can be predicted with relatively high confidence (±3-8 dB depending on the structure). Based on these functional relationships, we then used high-resolution computed tomography to examine the auditory region of three fossil New World monkeys (Homunculus, Dolicocebus, and Tremacebus) and compared their morphology and predicted low-frequency sensitivity with a phylogenetically diverse sample of extant primates. These comparisons reveal that these extinct taxa shared many auditory characteristics with living platyrrhines. However, the fossil with the best preserved auditory region (Homunculus) also displayed a few unique features such as the relative size of the tympanic membrane and stapedial footplate and the degree of trabeculation of the anterior accessory cavity. Still, the majority of evidence suggests that these fossil species likely had similar low-frequency sensitivity to extant South American monkeys. This research adds to the small but growing body of evidence on the evolution of hearing abilities in extinct taxa and lays the groundwork for predicting hearing sensitivity in additional fossil primate specimens.Item Open Access Evidence for independent peripheral and central age-related hearing impairment.(Journal of neuroscience research, 2020-09) Bao, Jianxin; Yu, Yan; Li, Hui; Hawks, John; Szatkowski, Grace; Dade, Bethany; Wang, Hao; Liu, Peng; Brutnell, Thomas; Spehar, Brent; Tye-Murray, NancyDeleterious age-related changes in the central auditory nervous system have been referred to as central age-related hearing impairment (ARHI) or central presbycusis. Central ARHI is often assumed to be the consequence of peripheral ARHI. However, it is possible that certain aspects of central ARHI are independent from peripheral ARHI. A confirmation of this possibility could lead to significant improvements in current rehabilitation practices. The major difficulty in addressing this issue arises from confounding factors, such as other age-related changes in both the cochlea and central non-auditory brain structures. Because gap detection is a common measure of central auditory temporal processing, and gap detection thresholds are less influenced by changes in other brain functions such as learning and memory, we investigated the potential relationship between age-related peripheral hearing loss (i.e., audiograms) and age-related changes in gap detection. Consistent with previous studies, a significant difference was found for gap detection thresholds between young and older adults. However, among older adults, no significant associations were observed between gap detection ability and several other independent variables including the pure tone audiogram average, the Wechsler Adult Intelligence Scale-Vocabulary score, gender, and age. Statistical analyses showed little or no contributions from these independent variables to gap detection thresholds. Thus, our data indicate that age-related decline in central temporal processing is largely independent of peripheral ARHI.Item Open Access Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses.(The Journal of the Acoustical Society of America, 2022-04) Harris, Kelly C; Bao, JianxinAccumulating evidence suggests that cochlear deafferentation may contribute to suprathreshold deficits observed with or without elevated hearing thresholds, and can lead to accelerated age-related hearing loss. Currently there are no clinical diagnostic tools to detect human cochlear deafferentation in vivo. Preclinical studies using a combination of electrophysiological and post-mortem histological methods clearly demonstrate cochlear deafferentation including myelination loss, mitochondrial damages in spiral ganglion neurons (SGNs), and synaptic loss between inner hair cells and SGNs. Since clinical diagnosis of human cochlear deafferentation cannot include post-mortem histological quantification, various attempts based on functional measurements have been made to detect cochlear deafferentation. So far, those efforts have led to inconclusive results. Two major obstacles to the development of in vivo clinical diagnostics include a lack of standardized methods to validate new approaches and characterize the normative range of repeated measurements. In this overview, we examine strategies from previous studies to detect cochlear deafferentation from electrocochleography and auditory brainstem responses. We then summarize possible approaches to improve these non-invasive functional methods for detecting cochlear deafferentation with a focus on cochlear synaptopathy. We identify conceptual approaches that should be tested to associate unique electrophysiological features with cochlear deafferentation.Item Open Access Stream segregation on a single electrode as a function of pulse rate in cochlear implant listeners.(2010) Duran, Sara IWhile cochlear implants usually provide a high level of speech recognition in quiet, speech recognition in noise and music appreciation remain challenging. In response to these issues, several studies have proposed increasing the number of channels of information through multiple pulse rate strategies. For the selection of pulse rates, studies of multi-rate strategies have considered implementation issues such as harmonics, pitch saturation, and tonotopic order but have not considered the fundamental perceptual question of whether two pulse rates can provide independent channels of information on a single electrode. This study measures stream segregation as an indicator of whether different pulse rates on the same electrode can be perceived independently. This approach differs from that of previous stream segregation studies which focused on stimulation of alternating electrodes, with the motivation of determining a relationship between electrode stream segregation and speech perception in challenging noisy environments. Stream segregation in this study was measured using two stimulus sequences following an A-B-A-B structure where A and B were different pulse rates stimulatingthe same electrode. The timing between A and B was controlled to provide either aregular or irregular gap between the two pulse trains. The threshold at which subjects could distinguish a regular rhythm from an irregular rhythm was used as an estimate of stream segregation since detecting an irregular rhythm is an easier task when the streams are fused. Stream segregation in cochlear implant users, as with normal hearing listeners, was hypothesized to be influenced by factors such as frequency and the relative timing between tones. To attempt to assess the relationship between these and stream segregation, subjects’ rate discrimination and gap detection abilities were also measured. The results of this study indicate that stream segregation can occur for two pulse rates on a single electrode; thus, it may be possible to use pulse rates to create additional channels of information. Further, the stream segregation results were not strongly correlated with the gap detection or rate discrimination results. The lack of correlation with the gap detection results suggests that the task was measuring a separate perceptual phenomenon rather than providing another measure of gap detection. The lack of correlation with the rate discrimination results suggests that discriminability may not be a limiting factor in selecting rates for segregation. These results may have implications for the future design of multi-rate speech processing strategies.Item Open Access Systematic mapping of the monkey inferior colliculus reveals enhanced low frequency sound representation.(Journal of neurophysiology, 2011-04) Bulkin, David A; Groh, Jennifer MWe investigated the functional architecture of the inferior colliculus (IC) in rhesus monkeys. We systematically mapped multiunit responses to tonal stimuli and noise in the IC and surrounding tissue of six rhesus macaques, collecting data at evenly placed locations and recording nonresponsive locations to define boundaries. The results show a modest tonotopically organized region (17 of 100 recording penetration locations in 4 of 6 monkeys) surrounded by a large mass of tissue that, although vigorously responsive, showed no clear topographic arrangement (68 of 100 penetration locations). Rather, most cells in these recordings responded best to frequencies at the low end of the macaque auditory range. The remaining 15 (of 100) locations exhibited auditory responses that were not sensitive to sound frequency. Potential anatomical correlates of functionally defined regions and implications for midbrain auditory prosthetic devices are discussed.