Browsing by Subject "Autopsy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.(Nature, 2021-07) Delorey, Toni M; Ziegler, Carly GK; Heimberg, Graham; Normand, Rachelly; Yang, Yiming; Segerstolpe, Åsa; Abbondanza, Domenic; Fleming, Stephen J; Subramanian, Ayshwarya; Montoro, Daniel T; Jagadeesh, Karthik A; Dey, Kushal K; Sen, Pritha; Slyper, Michal; Pita-Juárez, Yered H; Phillips, Devan; Biermann, Jana; Bloom-Ackermann, Zohar; Barkas, Nikolaos; Ganna, Andrea; Gomez, James; Melms, Johannes C; Katsyv, Igor; Normandin, Erica; Naderi, Pourya; Popov, Yury V; Raju, Siddharth S; Niezen, Sebastian; Tsai, Linus T-Y; Siddle, Katherine J; Sud, Malika; Tran, Victoria M; Vellarikkal, Shamsudheen K; Wang, Yiping; Amir-Zilberstein, Liat; Atri, Deepak S; Beechem, Joseph; Brook, Olga R; Chen, Jonathan; Divakar, Prajan; Dorceus, Phylicia; Engreitz, Jesse M; Essene, Adam; Fitzgerald, Donna M; Fropf, Robin; Gazal, Steven; Gould, Joshua; Grzyb, John; Harvey, Tyler; Hecht, Jonathan; Hether, Tyler; Jané-Valbuena, Judit; Leney-Greene, Michael; Ma, Hui; McCabe, Cristin; McLoughlin, Daniel E; Miller, Eric M; Muus, Christoph; Niemi, Mari; Padera, Robert; Pan, Liuliu; Pant, Deepti; Pe'er, Carmel; Pfiffner-Borges, Jenna; Pinto, Christopher J; Plaisted, Jacob; Reeves, Jason; Ross, Marty; Rudy, Melissa; Rueckert, Erroll H; Siciliano, Michelle; Sturm, Alexander; Todres, Ellen; Waghray, Avinash; Warren, Sarah; Zhang, Shuting; Zollinger, Daniel R; Cosimi, Lisa; Gupta, Rajat M; Hacohen, Nir; Hibshoosh, Hanina; Hide, Winston; Price, Alkes L; Rajagopal, Jayaraj; Tata, Purushothama Rao; Riedel, Stefan; Szabo, Gyongyi; Tickle, Timothy L; Ellinor, Patrick T; Hung, Deborah; Sabeti, Pardis C; Novak, Richard; Rogers, Robert; Ingber, Donald E; Jiang, Z Gordon; Juric, Dejan; Babadi, Mehrtash; Farhi, Samouil L; Izar, Benjamin; Stone, James R; Vlachos, Ioannis S; Solomon, Isaac H; Ashenberg, Orr; Porter, Caroline BM; Li, Bo; Shalek, Alex K; Villani, Alexandra-Chloé; Rozenblatt-Rosen, Orit; Regev, AvivCOVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.Item Open Access Sex and Race Disparities in Presumed Sudden Cardiac Death: One Size Does Not Fit All.(Circulation. Arrhythmia and electrophysiology, 2021-05) Chiamvimonvat, Nipavan; Frazier-Mills, Camille; Shen, Sharon T; Avari Silva, Jennifer N; Wan, Elaine YItem Open Access Utility of Autopsy among Pediatric Allogeneic Hematopoietic Stem Cell Transplant Recipients: One Last Chance to Learn?(Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2018-06-09) Kelly, Matthew S; Spees, Lisa; Vinesett, Richard; Stokhuyzen, Andre; McGill, Lauren; Proia, Alan D; Jenkins, Kirsten; Arshad, Mehreen; Seed, Patrick C; Martin, Paul LAutopsy may confirm clinical diagnoses or identify conditions that were not suspected prior to a patient's death. Previous studies evaluating the utility of autopsy in hematopoietic stem cell transplant (HSCT) recipients yielded conflicting results.We conducted a retrospective cohort study of children (<18 years of age) undergoing allogeneic HSCT at Duke University who died of any cause between January 1, 1995 and December 31, 2016. We evaluated associations between patient characteristics and autopsy performance using Chi-square or Fisher's exact tests. We reviewed autopsy reports to determine the concordance between pre-autopsy causes of death and pathological diagnoses identified on autopsy. We classified unexpected diagnoses on autopsy using criteria developed by Goldman et al. We evaluated for temporal changes in the autopsy consent rate and the frequency of unexpected diagnoses on autopsy using Cochran-Armitage tests.During the 22-year study period, 475 patients died and had data available on autopsy performance, and 130 (27%) of these patients underwent autopsy. The autopsy consent rate declined over time (P<0.0001), with autopsies being performed for 40% of deaths in 1995-1999 and 17% of deaths in 2009-2016. White patients were more likely to undergo autopsy than non-white patients (P=0.03). There were no associations between autopsy performance and patient age, sex, HSCT indication, or HSCT donor. Unexpected diagnoses were identified in 31 (24%) autopsies. The proportion of autopsies with an unexpected diagnosis did not change during the study period (P=0.45). However, infectious diagnoses that would have led to a change in management were more frequently identified on autopsies in 1995-2003 than in 2004-2016 (20% vs. 0%; P=0.001).The autopsy consent rate for pediatric HSCT recipients at our institution declined substantially over the past several decades. The utility of autopsy in this patient population remains high despite a reduction in the identification of unexpected infections.