Browsing by Subject "BIOLOGY"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Game Changer in Soil Science. The Anthropocene in soil science and pedology.(Journal of Plant Nutrition and Soil Science, 2020-02-01) Richter, DD© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The venerable science of pedology, initiated in the 19th century as the study of the natural factors of soil formation, is adapting to the demands of the Anthropocene, the geologic time during which planet Earth and its soils are transitioning from natural to human-natural systems. With vast areas of soils intensively managed, the future of pedology lies with a renewed science that can be called anthropedology that builds on the pedology of the past but proceeds from “human as outsider” to “human as insider.” In other words, the human in pedology must shift from being a soil-disturbing to soil-forming agent. Pedology is well prepared to respond to the challenges of the Anthropocene, given the decades of research on human-soil relations throughout human history and throughout the period of the Great Acceleration (Steffen et al., [76]). However, quantitative understanding of soil responses to the diversity of human forcings remains elementary and needs remedy.Item Open Access Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.(Scientific reports, 2016-09-27) Feger, Bryan J; Thompson, J Will; Dubois, Laura G; Kommaddi, Reddy P; Foster, Matthew W; Mishra, Rajashree; Shenoy, Sudha K; Shibata, Yoichiro; Kidane, Yared H; Moseley, M Arthur; Carnell, Lisa S; Bowles, Dawn EOn Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy.Item Open Access Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae)(International Journal of Plant Sciences, 2007-10-22) Metzgar, JS; Schneider, H; Pryer, KMA phylogeny for all extant species of the heterosporous fern genus Azolla is presented here based on more than 5000 base pairs of DNA sequence data from six plastid loci (rbcL, atpB, rps4, trnL-trnF, trnG-trnR, and rps4-trnS). Our results are in agreement with other recent molecular phylogenetic hypotheses that support the monophyly of sections Azolla and Rhizosperma and the proposed relationships within section Azolla. Divergence times are estimated within Azolla using a penalized likelihood approach, integrating data from fossils and DNA sequences. Penalized likelihood analyses estimate a divergence time of 50.7 Ma (Eocene) for the split between sections Azolla and Rhizosperma, 32.5 Ma (Oligocene) for the divergence of Azolla nilotica from A. pinnata within section Rhizosperma, and 16.3 Ma (Miocene) for the divergence of the two lineages within section Azolla (the A. filiculoides + A. rubra lineage from the A. caroliniana + A. microphylla + A. mexicana complex). © 2007 by The University of Chicago. All rights reserved.Item Open Access Three Trends in the History of Life: An Evolutionary Syndrome(Evolutionary Biology, 2016-12-01) McShea, DWThe history of life seems to be characterized by three large-scale trends in complexity: (1) the rise in complexity in the sense of hierarchy, in other words, an increase in the number of levels of organization within organisms; (2) the increase in complexity in the sense of differentiation, that is, a rise in the number of different part types at the level just below the whole; and (3) a downward trend, the loss of differentiation at the lowest levels in organisms, a kind of complexity drain within the parts. Here, I describe the three trends, outlining the evidence for each and arguing that they are connected with each other, that together they constitute an evolutionary syndrome, one that has recurred a number times over the history of life. Finally, in the last section, I offer an argument connecting the third trend to the reduction at lower levels of organization in “autonomy”, or from a different perspective, to an increase in what might be called the “machinification” of the lower levels.