Browsing by Subject "Band Structure"
Results Per Page
Sort Options
Item Open Access GaAsBi Synthesis: From Band Structure Modification to Nanostructure Formation(2017) Collar, Kristen N.Research and development bismides have proven bismides to be a promising field for material science with important applications in optoelectronics. However, the development of a complete description of the electrical and material properties of bismide ternaries is not comprehensive or straightforward. One of the main benefits of this ternary system is the opportunity for bandgap tuning, which opens doors to new applications. Tuning the bandgap is achieved by means of varying the composition; this allows access to a wider energy spectrum with particular applications in long wavelength emitters and detectors. In addition to bandgap tuning, Bi provides an opportunity to decrease lasing threshold currents, the temperature sensitivity and a major loss mechanism of today’s telecom lasers.
We propose to characterize the electronic and chemical structure of GaAsBi grown by molecular beam epitaxy. We probe the binding structure using x-ray photoelectron spectroscopy. This provides insights into the antisite incorporation of Bi and the reactivity of the surface. Furthermore, we use XPS to track the energy variation in the valence band with dilute Bi incorporation into GaAs. These insights provide valuable perspective into improving the predictability of bandgaps and of heterostructure band offsets for the realization of bismides in future electronics.
The stringent growth conditions required by GaAsBi and the surfactant properties of Bi provide a unique opportunity to study nanostructure formation and epitaxial growth control mechanisms. The GaAsBi epitaxial films under Ga-rich growth conditions self-catalyze Ga droplet seeds for Vapor-Liquid-Solid growth of embedded nanowires. We demonstrate a means to direct the nanowires unidirectionally along preferential crystallographic directions utilizing the step-flow growth mode. We mediated the step-flow growth by employing vicinal surfaces and Bi’s surfactant-like properties to enhance the properties of the step-flow growth mode. Semiconductor nanostructures are becoming a cornerstone of future optoelectronics and the work presented herein exploits the power of a bottom-up architecture to self-assemble aligned unidirectional planar nanowires.