Browsing by Subject "Basal Ganglia"
Results Per Page
Sort Options
Item Open Access Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.(Sci Rep, 2014-10-13) Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich DA pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.Item Open Access Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway.(Eur J Neurosci, 2008-12) Horita, Haruhito; Wada, Kazuhiro; Jarvis, Erich DSimilar to humans, songbirds rely on auditory feedback to maintain the acoustic and sequence structure of adult learned vocalizations. When songbirds are deafened, the learned features of song, such as syllable structure and sequencing, eventually deteriorate. However, the time-course and initial phases of song deterioration have not been well studied, particularly in the most commonly studied songbird, the zebra finch. Here, we observed previously uncharacterized subtle but significant changes to learned song within a few days following deafening. Syllable structure became detectably noisier and silent intervals between song motifs increased. Although song motif sequences remained stable at 2 weeks, as previously reported, pronounced changes occurred in longer stretches of song bout sequences. These included deletions of syllables between song motifs, changes in the frequency at which specific chunks of song were produced and stuttering for birds that had some repetitions of syllables before deafening. Changes in syllable structure and song bout sequence occurred at different rates, indicating different mechanisms for their deterioration. The changes in syllable structure required an intact lateral part but not the medial part of the pallial-basal ganglia vocal pathway, whereas changes in the song bout sequence did not require lateral or medial portions of the pathway. These findings indicate that deafening-induced song changes in zebra finches can be detected rapidly after deafening, that acoustic and sequence changes can occur independently, and that, within this time period, the pallial-basal ganglia vocal pathway controls the acoustic structure changes but not the song bout sequence changes.Item Open Access Social context-dependent singing-regulated dopamine.(J Neurosci, 2006-08-30) Sasaki, Aya; Sotnikova, Tatyana D; Gainetdinov, Raul R; Jarvis, Erich DLike the mammalian striatum, the songbird striatum receives dense dopaminergic input from the midbrain ventral tegmental area-substantia nigra pars compacta complex. The songbird striatum also contains a unique vocal nucleus, Area X, which has been implicated in song learning and social context-dependent song production. Area X shows increased neural firing and activity-dependent gene expression when birds sing, and the level of activation is higher and more variable during undirected singing relative to directed singing to other birds. Here we show in the first report of in vivo microdialysis in awake, behaving songbirds that singing is associated with increased dopamine levels in Area X. Dopamine levels are significantly higher with directed relative to undirected singing. This social context-dependent difference in dopamine levels requires the dopamine transporter, because local in vivo blockade of the transporter caused dopamine levels for undirected singing to increase to levels similar to that for directed singing, eliminating the social context-dependent difference. The increase in dopamine is presumably depolarization and vesicular release dependent, because adding of high K+ increased and removal of Ca2+ increased and decreased extracellular DA levels. Our findings implicate DA and molecules that control DA kinetics in singing behavior and social context-dependent brain function.Item Open Access Striatal Pathways for Action Counting and Steering(2024) Fallon, IsabellaThe mechanisms by which the nervous system generates action are subjects of ongoing debate. A large body of research supports a role for the striatal direct and indirect pathways in regulating actions. On the one hand, these pathways are critical for discrete decision-making, action initiation, and coordinating sequences of actions. These findings have led to the development of action selection models of striatal circuits. On the other hand, they also play a role in steering motion direction, are related to the kinematics of individual body parts, and coordinated movements. These insights have led to competing hypotheses about their control over bodily kinematics. These divergent hypotheses may have arisen from the functional diversity of subpopulations within striatal neurons. However, prior work supporting these hypotheses of striatal function has not measured both the discrete and continuous features of actions while recording and manipulating striatal pathways. To address this limitation, we designed a novel lever press count task that allows for this combined measurement. Our results show that mice accurately estimate press count and use it to decide when to approach a food port. Optogenetic manipulations reveal that the direct and indirect pathways oppositely control mice’s proximity to task-relevant landmarks and to the press count goal. In-vivo calcium imaging reveals distinct population activities that are correlated with mice’s displacement from task-relevant landmarks and completion of the press count. A striatal push-pull circuit is described that computes the mouse’s proximity to task-relevant landmarks and the press count through subtraction of population activity over time. This work sheds light on a potentially general function of striatal neurons in regulating action during goal pursuit, with implications for understanding action dysregulation in many conditions.
Item Restricted The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway.(Eur J Neurosci, 2007-04) Kubikova, L; Turner, Elena A; Jarvis, Erich DavidThe discrete neural network for songbird vocal communication provides an effective system to study neural mechanisms of learned motor behaviors in vertebrates. This system consists of two pathways--a vocal motor pathway used to produce learned vocalizations and a vocal pallial basal ganglia loop used to learn and modify the vocalizations. However, it is not clear how the loop exerts control over the motor pathway. To study the mechanism, we used expression of the neural activity-induced gene ZENK (or egr-1), which shows singing-regulated expression in a social context-dependent manner: high levels in both pathways when singing undirected and low levels in the lateral part of the loop and in the robust nucleus of the arcopallium (RA) of the motor pathway when singing directed to another animal. Here, we show that there are two parallel interactive parts within the pallial basal ganglia loop, lateral and medial, which modulate singing-driven ZENK expression of the motor pathway nuclei RA and HVC, respectively. Within the loop, the striatal and pallial nuclei appear to have opposing roles; the striatal vocal nucleus lateral AreaX is required for high ZENK expression in its downstream nuclei, particularly during undirected singing, while the pallial vocal lateral magnocellular nucleus of the anterior nidopallium is required for lower expression, particularly during directed singing. These results suggest a dynamic molecular interaction between the basal ganglia pathway and the motor pathway during production of a learned motor behavior.Item Open Access White Matter Tract Changes Associated with Clinical Improvement in an Open-Label Trial Assessing Autologous Umbilical Cord Blood for Treatment of Young Children with Autism.(Stem cells translational medicine, 2019-02) Carpenter, Kimberly LH; Major, Samantha; Tallman, Catherine; Chen, Lyon W; Franz, Lauren; Sun, Jessica; Kurtzberg, Joanne; Song, Allen; Dawson, GeraldineAutism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social communication deficits and the presence of restricted interests and repetitive behaviors. We have previously reported significant improvements in behavior, including increased social functioning, improved communication abilities, and decreased clinical symptoms in children with ASD, following treatment with a single infusion of autologous cord blood in a phase I open-label trial. In the current study, we aimed to understand whether these improvements were associated with concurrent changes in brain structural connectivity. Twenty-five 2- to 6-year-old children with ASD participated in this trial. Clinical outcome measures included the Vineland Adaptive Behavior Scales-II Socialization Subscale, Expressive One-Word Picture Vocabulary Test-4, and the Clinical Global Impression-Improvement Scale. Structural connectivity was measured at baseline and at 6 months in a subset of 19 children with 25-direction diffusion tensor imaging and deterministic tractography. Behavioral improvements were associated with increased white matter connectivity in frontal, temporal, and subcortical regions (hippocampus and basal ganglia) that have been previously shown to show anatomical, connectivity, and functional abnormalities in ASD. The current results suggest that improvements in social communication skills and a reduction in symptoms in children with ASD following treatment with autologous cord blood infusion were associated with increased structural connectivity in brain networks supporting social, communication, and language abilities. Stem Cells Translational Medicine 2019;8:138&10.