Browsing by Subject "Bayesian model averaging"
Results Per Page
Sort Options
Item Open Access Bayesian Hierarchical Models for Model Choice(2013) Li, YingboWith the development of modern data collection approaches, researchers may collect hundreds to millions of variables, yet may not need to utilize all explanatory variables available in predictive models. Hence, choosing models that consist of a subset of variables often becomes a crucial step. In linear regression, variable selection not only reduces model complexity, but also prevents over-fitting. From a Bayesian perspective, prior specification of model parameters plays an important role in model selection as well as parameter estimation, and often prevents over-fitting through shrinkage and model averaging.
We develop two novel hierarchical priors for selection and model averaging, for Generalized Linear Models (GLMs) and normal linear regression, respectively. They can be considered as "spike-and-slab" prior distributions or more appropriately "spike- and-bell" distributions. Under these priors we achieve dimension reduction, since their point masses at zero allow predictors to be excluded with positive posterior probability. In addition, these hierarchical priors have heavy tails to provide robust- ness when MLE's are far from zero.
Zellner's g-prior is widely used in linear models. It preserves correlation structure among predictors in its prior covariance, and yields closed-form marginal likelihoods which leads to huge computational savings by avoiding sampling in the parameter space. Mixtures of g-priors avoid fixing g in advance, and can resolve consistency problems that arise with fixed g. For GLMs, we show that the mixture of g-priors using a Compound Confluent Hypergeometric distribution unifies existing choices in the literature and maintains their good properties such as tractable (approximate) marginal likelihoods and asymptotic consistency for model selection and parameter estimation under specific values of the hyper parameters.
While the g-prior is invariant under rotation within a model, a potential problem with the g-prior is that it inherits the instability of ordinary least squares (OLS) estimates when predictors are highly correlated. We build a hierarchical prior based on scale mixtures of independent normals, which incorporates invariance under rotations within models like ridge regression and the g-prior, but has heavy tails like the Zeller-Siow Cauchy prior. We find this method out-performs the gold standard mixture of g-priors and other methods in the case of highly correlated predictors in Gaussian linear models. We incorporate a non-parametric structure, the Dirichlet Process (DP) as a hyper prior, to allow more flexibility and adaptivity to the data.
Item Open Access Bayesian Multiregression Dynamic Models with Applications in Finance and Business(2015) Zhao, YiThis thesis discusses novel developments in Bayesian analytics for high-dimensional multivariate time series. The focus is on the class of multiregression dynamic models (MDMs), which can be decomposed into sets of univariate models processed in parallel yet coupled for forecasting and decision making. Parallel processing greatly speeds up the computations and vastly expands the range of time series to which the analysis can be applied.
I begin by defining a new sparse representation of the dependence between the components of a multivariate time series. Using this representation, innovations involve sparse dynamic dependence networks, idiosyncrasies in time-varying auto-regressive lag structures, and flexibility of discounting methods for stochastic volatilities.
For exploration of the model space, I define a variant of the Shotgun Stochastic Search (SSS) algorithm. Under the parallelizable framework, this new SSS algorithm allows the stochastic search to move in each dimension simultaneously at each iteration, and thus it moves much faster to high probability regions of model space than does traditional SSS.
For the assessment of model uncertainty in MDMs, I propose an innovative method that converts model uncertainties from the multivariate context to the univariate context using Bayesian Model Averaging and power discounting techniques. I show that this approach can succeed in effectively capturing time-varying model uncertainties on various model parameters, while also identifying practically superior predictive and lucrative models in financial studies.
Finally I introduce common state coupled DLMs/MDMs (CSCDLMs/CSCMDMs), a new class of models for multivariate time series. These models are related to the established class of dynamic linear models, but include both common and series-specific state vectors and incorporate multivariate stochastic volatility. Bayesian analytics are developed including sequential updating, using a novel forward-filtering-backward-sampling scheme. Online and analytic learning of observation variances is achieved by an approximation method using variance discounting. This method results in faster computation for sequential step-ahead forecasting than MCMC, satisfying the requirement of speed for real-world applications.
A motivating example is the problem of short-term prediction of electricity demand in a "Smart Grid" scenario. Previous models do not enable either time-varying, correlated structure or online learning of the covariance structure of the state and observational evolution noise vectors. I address these issues by using a CSCMDM and applying a variance discounting method for learning correlation structure. Experimental results on a real data set, including comparisons with previous models, validate the effectiveness of the new framework.
Item Open Access Finite population estimators in stochastic search variable selection(BIOMETRIKA, 2012-12) Clyde, MA; Ghosh, J