Browsing by Subject "Benzo(a)pyrene"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish.(Neurotoxicology and teratology, 2022-09) Hawkey, Andrew B; Piatos, Perry; Holloway, Zade; Boyda, Jonna; Koburov, Reese; Fleming, Elizabeth; Di Giulio, Richard T; Levin, Edward DPolycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.Item Open Access Embryonic exposures to cadmium and PAHs cause long-term and interacting neurobehavioral effects in zebrafish.(Neurotoxicology and teratology, 2024-03) Stickler, Alexandra; Hawkey, Andrew B; Gondal, Anas; Natarajan, Sarabesh; Mead, Mikayla; Levin, Edward DDevelopmental exposure to either polycyclic aromatic hydrocarbons (PAHs) or heavy metals has been shown to cause persisting and overlapping neurobehavioral effects in animal models. However, interactions between these compounds have not been well characterized, despite their co-occurrence in a variety of environmental media. In two companion studies, we examined the effects of developmental exposure to cadmium (Cd) with or without co-exposure to prototypic PAHs benzo[a]pyrene (BaP, Exp. 1) or fluoranthene (FA, Exp. 2) using a developing zebrafish model. Zebrafish embryos were exposed to Cd (0-0.3 μM), BaP (0-3 μM), FA (0-1.0 μM), or binary Cd-PAH mixtures from 5 to 122 h post fertilization (hpf). In Exp. 1, Cd and BaP produced independent effects on an array of outcomes and interacting effects on specific outcomes. Notably, Cd-induced deficits in dark-induced locomotor stimulation were attenuated by BaP co-exposure in the larval motility test and BaP-induced hyperactivity was attenuated by Cd co-exposure in the adolescent novel tank test. Likewise, in Exp. 2, Cd and FA produced both independent and interacting effects. FA-induced increases on adult post-tap activity in the tap startle test were attenuated by co-exposure with Cd. On the predator avoidance test, FA- and 0.3 μM Cd-induced hyperactivity effects were attenuated by their co-exposure. Taken together, these data indicate that while the effects of Cd and these representative PAHs on zebrafish behavior were largely independent of one another, binary mixtures can produce sub-additive effects for some neurobehavioral outcomes and at certain ages. This research emphasizes the need for detailed risk assessments of mixtures containing contaminants of differing classes, and for clarity on the mechanisms which allow cross-class toxicant interactions to occur.Item Open Access Gestational exposure to nicotine and/or benzo[a]pyrene causes long-lasting neurobehavioral consequences.(Birth defects research, 2019-10) Hawkey, Andrew; Junaid, Shaqif; Yao, Leah; Spiera, Zachary; White, Hannah; Cauley, Marty; Levin, Edward DTobacco smoke is a complex mixture that includes thousands of compounds. Previously, we have found that gestational exposure to the complex mixture of tobacco smoke extract caused long-term neurobehavioral impairments. In this study, we examined the interaction of two of the most biologically active, nicotine and benzo[a]pyrene (BaP). Developmental effects were determined in Sprague-Dawley rats prenatally exposed to low doses of BaP and nicotine (0.03 mg/kg/day of BaP and 2 mg/kg/day of nicotine) via maternal osmotic minipumps throughout gestation. Behavioral function was assessed in the offspring via a battery of tests through adolescence into adulthood. There were sex-selective effects in four of the behavioral tests. In the elevated plus maze, there was a significant interaction of BaP and sex, where BaP-treated males showed a trend for increased activity. In the novelty suppressed feeding test, there were significant sex selective effects in males such that the normal sex difference in the behavior in this test was eliminated. Male offspring with prenatal exposure to either nicotine or BaP showed significant reductions in fear response. In the Figure-8 locomotor activity test, BAP-exposed male offspring were significantly hyperactive. This also eliminated the sex difference typically seen in this test. This effect persisted into adulthood. In the attention task, males exposed to nicotine during gestation showed a significant percent hit impairment. BaP reversed this effect. No significant effects were seen with percent correct rejection. These data show that both nicotine and BaP cause persisting sex-selective behavioral effects that persist into adulthood.Item Open Access Mitochondrial dysfunction and oxidative stress contribute to cross-generational toxicity of benzo(a)pyrene in Danio rerio.(Aquatic toxicology (Amsterdam, Netherlands), 2023-10) Kozal, Jordan S; Jayasundara, Nishad; Massarsky, Andrey; Lindberg, Casey D; Oliveri, Anthony N; Cooper, Ellen M; Levin, Edward D; Meyer, Joel N; Giulio, Richard T DiThe potential for polycyclic aromatic hydrocarbons (PAHs) to have adverse effects that persist across generations is an emerging concern for human and wildlife health. This study evaluated the role of mitochondria, which are maternally inherited, in the cross-generational toxicity of benzo(a)pyrene (BaP), a model PAH and known mitochondrial toxicant. Mature female zebrafish (F0) were fed diets containing 0, 12.5, 125, or 1250 μg BaP/g at a feed rate of 1% body weight twice/day for 21 days. These females were bred with unexposed males, and the embryos (F1) were collected for subsequent analyses. Maternally-exposed embryos exhibited altered mitochondrial function and metabolic partitioning (i.e. the portion of respiration attributable to different cellular processes), as evidenced by in vivo oxygen consumption rates (OCRs). F1 embryos had lower basal and mitochondrial respiration and ATP turnover-mediated OCR, and increased proton leak and reserve capacity. Reductions in mitochondrial DNA (mtDNA) copy number, increases in mtDNA damage, and alterations in biomarkers of oxidative stress were also found in maternally-exposed embryos. Notably, the mitochondrial effects in offspring occurred largely in the absence of effects in maternal ovaries, suggesting that PAH-induced mitochondrial dysfunction may manifest in subsequent generations. Maternally-exposed larvae also displayed swimming hypoactivity. The lowest observed effect level (LOEL) for maternal BaP exposure causing mitochondrial effects in offspring was 12.5 µg BaP/g diet (nominally equivalent to 250 ng BaP/g fish). It was concluded that maternal BaP exposure can cause significant mitochondrial impairments in offspring.Item Open Access The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems.(Toxicological sciences : an official journal of the Society of Toxicology, 2019-01) Slotkin, Theodore A; Skavicus, Samantha; Ko, Ashley; Levin, Edward D; Seidler, Frederic JTobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.Item Open Access The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development.(Neurotoxicology, 2021-09) Holloway, Zade; Hawkey, Andrew; Asrat, Helina; Boinapally, Nidhi; Levin, Edward DPolycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants created by incomplete combustion. Benzo(a)pyrene (BaP), the prototypic PAH, is known to exert toxicity through oxidative stress which is thought to occur through inhibition of antioxidant scavenging systems. The use of agents that reduce oxidative stress may be a valuable route for ameliorating the adverse effects of PAHs on neural development and behavior. This study was conducted to determine if tocofersolan (a synthetic water-soluble analog of vitamin E) supplementation can prevent or reduce neurobehavioral deficits in zebrafish embryos exposed to BaP during early development. Newly hatched zebrafish were assessed on locomotor activity and light responsivity. Zebrafish embryos were exposed to vehicle (DMSO), tocofersolan (0.3 μM-3 μM), and/or BaP (5 μM) from 5-120 hours post-fertilization. This concentration range was below the threshold for producing overt dysmorphogenesis or decreased survival. One day after the end of exposure the larval fish were tested for locomotor activity under alternating light and dark 10 min periods, BaP (5 μM) was found to cause locomotor hypoactivity in larval fish. Co-exposure of tocofersolan (1 μM) restored control-like locomotor function. Based on the findings of this study, this model can be expanded to assess the outcome of vitamin E supplementation on other potential environmental neurotoxicants, and lead to determination if this rescue persists into adulthood.