Browsing by Subject "Biodiversity"
- Results Per Page
- Sort Options
Item Restricted A census of marine biodiversity knowledge, resources, and future challenges.(PLoS One, 2010-08-02) Costello, Mark John; Coll, Marta; Danovaro, Roberto; Halpin, Pat; Ojaveer, Henn; Miloslavich, PatriciaItem Open Access A fast-moving target: achieving marine conservation goals under shifting climate and policies.(Ecological applications : a publication of the Ecological Society of America, 2020-01) Rilov, Gil; Fraschetti, Simonetta; Gissi, Elena; Pipitone, Carlo; Badalamenti, Fabio; Tamburello, Laura; Menini, Elisabetta; Goriup, Paul; Mazaris, Antonios D; Garrabou, Joaquim; Benedetti-Cecchi, Lisandro; Danovaro, Roberto; Loiseau, Charles; Claudet, Joachim; Katsanevakis, SteliosIn the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.Item Open Access A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas.(Ann N Y Acad Sci, 2017-07) Mascia, Michael B; Fox, Helen E; Glew, Louise; Ahmadia, Gabby N; Agrawal, Arun; Barnes, Megan; Basurto, Xavier; Craigie, Ian; Darling, Emily; Geldmann, Jonas; Gill, David; Holst Rice, Susie; Jensen, Olaf P; Lester, Sarah E; McConney, Patrick; Mumby, Peter J; Nenadovic, Mateja; Parks, John E; Pomeroy, Robert S; White, Alan TEnvironmental conservation initiatives, including marine protected areas (MPAs), have proliferated in recent decades. Designed to conserve marine biodiversity, many MPAs also seek to foster sustainable development. As is the case for many other environmental policies and programs, the impacts of MPAs are poorly understood. Social-ecological systems, impact evaluation, and common-pool resource governance are three complementary scientific frameworks for documenting and explaining the ecological and social impacts of conservation interventions. We review key components of these three frameworks and their implications for the study of conservation policy, program, and project outcomes. Using MPAs as an illustrative example, we then draw upon these three frameworks to describe an integrated approach for rigorous empirical documentation and causal explanation of conservation impacts. This integrated three-framework approach for impact evaluation of governance in social-ecological systems (3FIGS) accounts for alternative explanations, builds upon and advances social theory, and provides novel policy insights in ways that no single approach affords. Despite the inherent complexity of social-ecological systems and the difficulty of causal inference, the 3FIGS approach can dramatically advance our understanding of, and the evidentiary basis for, effective MPAs and other conservation initiatives.Item Open Access An ecosystem-based deep-ocean strategy.(Science (New York, N.Y.), 2017-02) Danovaro, R; Aguzzi, J; Fanelli, E; Billett, D; Gjerde, K; Jamieson, A; Ramirez-Llodra, E; Smith, CR; Snelgrove, PVR; Thomsen, L; Dover, CL VanItem Open Access An estimate of the number of tropical tree species.(Proc Natl Acad Sci U S A, 2015-06-16) Slik, JW Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo LM; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K; Chazdon, Robin L; Clark, Connie; Clark, David B; Clark, Deborah A; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl AO; Eisenlohr, Pedro V; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A; Joly, Carlos A; de Jong, Bernardus HJ; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F; Lawes, Michael J; Amaral, Ieda Leao do; Letcher, Susan G; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H; Meilby, Henrik; Melo, Felipe PL; Metcalfe, Daniel J; Medjibe, Vincent P; Metzger, Jean Paul; Millet, Jerome; Mohandass, D; Montero, Juan C; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria TF; Pitman, Nigel CA; Poorter, Lourens; Poulsen, Axel D; Poulsen, John; Powers, Jennifer; Prasad, Rama C; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; Dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A; Santos, Fernanda; Sarker, Swapan K; Satdichanh, Manichanh; Schmitt, Christine B; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I-Fang; Sunderland, Terry; Suresh, HS; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan LCH; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Whitfeld, Timothy; Wich, Serge A; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Yoneda, Tsuyoshi; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L; Garcia Luize, Bruno; Venticinque, Eduardo MThe high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.Item Open Access An Information Systems Strategy for the Environmental Conservation Community(2008-04-25T20:55:48Z) Barker, KristinAs the cause of environmental conservation emerges as a global priority, the need for a practical information systems strategy shared among conservation organizations becomes imperative. Historically, researchers and practitioners in conservation have met their own information management and analysis needs with inevitable variation in methodology, semantics, data formats and quality. Consequently, conservation organizations have been unable to systematically assess conditions and set informed priorities at various scales, measure performance of their projects and improve practices through adaptive management. Moreover, the demands on conservation are changing such that the bottom-up approach to information systems will become an increasing constraint to effective environmental problem solving. Where we have historically focused on the protection of “important” places and species and more recently “biodiversity,” conservation is moving to a systems view, specifically ecosystem-based management, where relationships and process are as important as the individual elements. In parallel, awareness of the human dependency on functioning natural systems is on the rise and with it the need to explicitly value ecosystem services and inform tradeoffs. Climate change requires conservation to develop dynamic adaptation scenarios at multiple spatial and temporal scales. Finally, the business of conservation is under increased pressure to account for its spending and objectively measure outcomes of its strategies. All of these changes translate to growing, not shrinking, demands on information and information systems. In response to these challenges, this research presents an information systems strategy for the environmental conservation community. It proposes the development of a distributed systems infrastructure with end-user tools and shared services that support standardized datasets. Key strategies include removing the barriers to information sharing, providing valuable tools to data producers and directly supporting heterogeneity in conservation datasets. The strategy concludes with a call for high-level management involvement in information systems strategy and collaborative investment in implementation by the conservation community, partners in government and donors. Without these steps, conservation as an industry may find itself ill-equipped to meet the changing needs of people and nature.Item Open Access ASSESSING THE BIODIVERSITY SUPPORT POTENTIAL OF FOREST PATCHES FOR CONSERVATION PLANNING(2008-12-04T19:39:07Z) Leddick, JesseBiological diversity is a critical component controlling ecosystem function and resiliency, yet it remains difficult to measure at the spatial and temporal scales relevant to conservation. Recently, biodiversity surrogates have emerged as a potentially useful tool for estimating the ability of a habitat patch to support biological diversity over the long-term, termed biodiversity support potential. The objective of the present study was to assess the biodiversity support potential of forest habitat patches in North Carolina. I used the diversity of unique land cover types and biophysical conditions as surrogates for biodiversity. Biophysical conditions were captured through the use of terrain-based indices: a topographic convergence index, potential radiation load, and elevation; these were indexed and combined to generate unique environmental conditions affecting the distribution of plant community types. Modeled estimates of soil moisture were ground-truthed to verify that topographic convergence is a reasonable index of soil moisture. Natural Heritage Element Occurrences were used to weight discrete environmental conditions and land covers according to their current biodiversity value. Finally, Significant Natural Heritage Areas were used as a reference to assesses whether biodiversity surrogates effectively capture habitats presumed to have the highest biodiversity value, and thus, whether surrogates are capable of evaluating existing networks of protected lands and identifying conservation priorities. The study revealed that both environmental settings and vegetation community types may be effectively used as surrogates for biodiversity. While surrogate assessment suggests that current biodiversity value (estimated by weighted metrics) should be considered distinct from biodiversity support potential (estimated by unweighted zip code diversity), both metrics are relevant and should be incorporated into conservation planning initiatives. Using geospatial tools developed in this study, estimates of biodiversity support potential and value can be generated for all regions of the United States using existing, publicly available data. Environmental settings may be adjusted to capture the most relevant characteristics of each ecoregion, especially as additional data sets (including fine-scale soils data) becomes nationally available. Biodiversity surrogates may also be readily calibrated through the use Natural Heritage data. Thus, I call for increased cooperation and data-sharing in future conservation planning and implementation efforts.Item Open Access Avian Distribution Patterns and Conservation in Amazonia(2007-10-19) Vale, Mariana MIn this dissertation, I address the distribution and conservation of the Amazonian avifauna at several different scales. In Chapter 1, I looked at how the spatial bias in ornithological collections affects our understanding of the patterns of diversity in Amazonia. I showed that Amazonia is massively under-collected, that biological collection sites cluster around points of access, and that the richness at collection localities is higher than would be expected at random. This greater richness in collected areas was associated with a higher proportion of species with small geographical ranges as compared to uncollected areas. These small range species are relevant for conservation, as they are especially prone to extinction. I concluded that the richness of the uncollected areas of Amazonia is seriously underestimated, and that current knowledge gaps preclude accurate selection of areas for conservation in Amazonia. With this in mind, I modeled the impacts of continued deforestation on the Amazonian endemic avifauna. To overcome knowledge gaps, I complemented bird range maps with a "bird-ecoregions." I identified several taxa and bird-ecoregions likely to face great threat in the near future, most of them associated with riverine habitats. To evaluate these predictions, I conducted a detailed study on two riverine species: the Rio Branco Antbird (Cercomacra carbonaria) and the Hoary-throated Spinetail (Synallaxis kollari). Both are threatened and endemic to the gallery forests of Roraima, Brazil. I predicted that both would lose critical habitat in the near future. I concluded that neither is categorized correctly in by The World Conservation Union and recommend the down-listing of the Rio-Branco-Antbird and the up-listing of the Hoary-throated Spinetail. I also explored the importance of indigenous reserves for the conservation of both species and emphasized the need for greater involvement of conservation biologists in the social issues related to their study organisms.Item Open Access Behavioural ecology and infectious disease: implications for conservation of biodiversity.(Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2019-09) Herrera, James; Nunn, Charles LBehaviour underpins interactions among conspecifics and between species, with consequences for the transmission of disease-causing parasites. Because many parasites lead to declines in population size and increased risk of extinction for threatened species, understanding the link between host behaviour and disease transmission is particularly important for conservation management. Here, we consider the intersection of behaviour, ecology and parasite transmission, broadly encompassing micro- and macroparasites. We focus on behaviours that have direct impacts on transmission, as well as the behaviours that result from infection. Given the important role of parasites in host survival and reproduction, the effects of behaviour on parasitism can scale up to population-level processes, thus affecting species conservation. Understanding how conservation and infectious disease control strategies actually affect transmission potential can therefore often only be understood through a behavioural lens. We highlight how behavioural perspectives of disease ecology apply to conservation by reviewing the different ways that behavioural ecology influences parasite transmission and conservation goals. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.Item Open Access BioTools: Developing and Investing in Biodiversity Responsible Business(2010-09-03) Sater, MaryThe objective for these tools is to encourage the conservation of biodiversity through private sector investment in biodiversity business. The tools seek to enable both investors and business developers to create viable business models that are biodiversity responsible, either through the use and consumption of biodiversity within the space that the project occupies or through the responsible management of biodiversity within the project space. The long-term objective of the Tools is to harness private capital to create green ventures that achieve the objectives of the UN Convention on Biological Diversity. To develop the BioTools, a review of academic business and scientific literature was conducted, as well as a review of current developments in the grey literature of international policy organizations. These sources provided background on the current efforts to conserve biodiversity, the juncture between business and policy to conserve biodiversity, and tools for all facets of business operations. During the development of the tools, both business frameworks and applications to environmental problems were researched and adopted and modified to fulfill the objectives of BioTool development. The Convention on Biological Diversity has three objectives in its mandate: the conservation of biodiversity, sustainable use, and equitable sharing of benefits. Within the work program the Convention has identified businesses as a key constituency to aid the goal of slowing the loss of biodiversity. Given these tools, businesses and investors can develop and invest in projects that seek to employ biodiversity resources in a sustainable and equitable fashion.Item Open Access Bird extirpations and community dynamics in an Andean cloud forest over 100 years of land-use change.(Conservation biology : the journal of the Society for Conservation Biology, 2020-06) Palacio, Ruben D; Kattan, Gustavo H; Pimm, Stuart LLong-term studies to understand biodiversity changes remain scarce-especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost-a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.Item Open Access China's endemic vertebrates sheltering under the protective umbrella of the giant panda.(Conservation biology : the journal of the Society for Conservation Biology, 2016-04) Li, Binbin V; Pimm, Stuart LThe giant panda attracts disproportionate conservation resources. How well does this emphasis protect other endemic species? Detailed data on geographical ranges are not available for plants or invertebrates, so we restrict our analyses to 3 vertebrate taxa: birds, mammals, and amphibians. There are gaps in their protection, and we recommend practical actions to fill them. We identified patterns of species richness, then identified which species are endemic to China, and then which, like the panda, live in forests. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, we identified the top 5% richest areas as the centers of endemism. Southern mountains, especially the eastern Hengduan Mountains, were centers for all 3 taxa. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitat will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda's distribution. Of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these species the International Union for Conservation of Nature currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently nonthreatened, yet their geographical ranges are <20,000 km(2) after accounting for elevational restriction and remaining habitats. These species concentrate mainly in Sichuan, Yunnan, Nan Mountains, and Hainan. There is a high concentration in the east Daxiang and Xiaoxiang Mountains of Sichuan, where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains, and Hainan. Here, 10 prefectures might establish new protected areas or upgrade local nature reserves to national status.Item Open Access Clean Water Through Conservation in the Jordan Lake Watershed(2019-04-25) Tucker, Emily; Ray, James; Parks, RyanWatershed management is becoming increasingly holistic. Novel approaches are needed to satisfy the interests of diverse stakeholders – including municipal water users, environmental groups, and agricultural communities. In the rapidly developing Jordan Lake Watershed, stakeholders are eagerly seeking comprehensive approaches to prevent further water quality degradation and the loss and fragmentation of ecological resources. We present an approach for identifying these opportunities. First, we identify high quality natural areas that should be protected to maintain water quality. Second, we highlight riparian restoration areas that maximize pollutant retention and bridge the watershed’s biodiversity hotspots. Finally, we evaluate the financial costs and benefits farmers face when adopting conservation agricultural practices to determine where they will be most successful. In combination, these practices can protect, connect and restore a high-functioning watershed.Item Open Access Climate drives the geography of marine consumption by changing predator communities.(Proceedings of the National Academy of Sciences of the United States of America, 2020-11) Whalen, Matthew A; Whippo, Ross DB; Stachowicz, John J; York, Paul H; Aiello, Erin; Alcoverro, Teresa; Altieri, Andrew H; Benedetti-Cecchi, Lisandro; Bertolini, Camilla; Bresch, Midoli; Bulleri, Fabio; Carnell, Paul E; Cimon, Stéphanie; Connolly, Rod M; Cusson, Mathieu; Diskin, Meredith S; D’Souza, Elrika; Flores, Augusto AV; Fodrie, F Joel; Galloway, Aaron WE; Gaskins, Leo C; Graham, Olivia J; Hanley, Torrance C; Henderson, Christopher J; Hereu, Clara M; Hessing-Lewis, Margot; Hovel, Kevin A; Hughes, Brent B; Hughes, A Randall; Hultgren, Kristin M; Jänes, Holger; Janiak, Dean S; Johnston, Lane N; Jorgensen, Pablo; Kelaher, Brendan P; Kruschel, Claudia; Lanham, Brendan S; Lee, Kun-Seop; Lefcheck, Jonathan S; Lozano-Álvarez, Enrique; Macreadie, Peter I; Monteith, Zachary L; O’Connor, Nessa E; Olds, Andrew D; O’Leary, Jennifer K; Patrick, Christopher J; Pino, Oscar; Poore, Alistair GB; Rasheed, Michael A; Raymond, Wendel W; Reiss, Katrin; Rhoades, O Kennedy; Robinson, Max T; Ross, Paige G; Rossi, Francesca; Schlacher, Thomas A; Seemann, Janina; Silliman, Brian R; Smee, Delbert L; Thiel, Martin; Unsworth, Richard KF; van Tussenbroek, Brigitta I; Vergés, Adriana; Yeager, Mallarie E; Yednock, Bree K; Ziegler, Shelby L; Duffy, J EmmettThe global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.Item Open Access Comparative genomics reveals insights into avian genome evolution and adaptation.(Science, 2014-12-12) Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Avian Genome Consortium; Jarvis, Erich D; Gilbert, M Thomas P; Wang, JunBirds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.Item Open Access Conservation of endemic species in China(2017) Binbin, LIChina is one of the most biodiverse countries in the world, harboring more than 10% of the species in the world. Among them, 11% of the vertebrate genera and 7% plant genera are endemic to China. During its rapid social and economic development, increasing habitat loss and fragmentation have occurred. However, it wakes up to the threats of biodiversity in recent years. Protected areas, as an essential conservation tool to reduce habitat loss and species extinction have expanded dramatically in China. Protected areas with various other concepts such as umbrella species and payment for ecosystem services have been promoted to conserve the biodiversity. However, questions remain that whether they work, how they work and how we could do better. It is crucial to answer these questions with the data and technology that are more available to us now.
Thus, my dissertation divides into four chapters and tackles the following four questions. 1) Where do the most of the endemic species concentrate in China? Do umbrellas species such as giant pandas effectively protect other species? 2) With the increasing of tree plantation and available remote sensing data, how does it change the available habitat for forest species, their threat levels and priority setting? 3) Within the conservation priority areas, new threats that are hardly detected by traditional evaluation index such as forest cover emerge. How does a prevalent human disturbance - livestock grazing impact the conservation of giant pandas? What are the socio-economic drivers and solutions to this issue? 4) To better monitor the population and evaluate conservation efforts, new techniques need to be added. Can we use footprints from wild pandas to identify individuals and provide a cost-effective alternative to the current methods?
In Chapter 1, I first used detailed data on geographical ranges for endemic forest species to identify patterns of species richness. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, I identified the top 5% richest areas as the centers of endemism. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitats will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda’s distribution. For whole China, of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these the IUCN currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently non-threatened, yet their geographical ranges are <20,000 km2 which is the threshold for IUCN to consider it as threatened. There is a high concentration of these species in the east Daxiang and Xiaoxiang Mountains of Sichuan where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains and Hainan. Here, ten prefectures might establish new protected areas or upgrade local nature reserves to national status.
In Chapter 2, I used remote sensing data to differentiate oil palm and rubber plantation from natural forests in Southeast Asia and reevaluated the threat level of endemic forest species identified by IUCN. Tropical, mainland Southeast Asia is under exceptional threat, yet relatively poorly known. This region contains over 122, 183, and 214 endemic mammals, birds, and amphibians, respectively, of which the IUCN considers 37, 21, and 37 threatened. When corrected for the amount of remaining natural habitats, the average sizes of species ranges shrink to <40% of their published ranges and more than 42 percent of species face a much higher risk of extinction from habitat loss than previously thought. Moreover, these species are not better protected by the existing network of protected areas than are species that IUCN accepts as threatened. Furthermore, incorporating remote sensing data showing where habitat loss is prevalent changes the locations of conservation priorities.
Chapter three focuses on a specific threat - livestock grazing in the endemic center that I identified in the first chapter. With the Natural Forest Conservation Program and Grain to Green programs, the deforestation that was once the biggest threat to pandas has been halted. However, a previously unrecognized threat is emerging. Livestock grazing has become the most prevalent human disturbance throughout panda habitats. I applied field sign survey, vegetation survey, GPS collar tracking, and species distribution modeling to study how the livestock grazing impacts the habitat use of giant pandas. This study shows that livestock grazing especially from horses has caused a dramatic decline in bamboos and reduced its regeneration. In the past 15 years, pandas have changed its habitat use and are driven out of areas that are heavily used by livestock. 49% of panda habitat has been lost especially in the lower elevation areas from 2004 till now due to impacts of livestock. Loss of income because of the policies Natural Forest Conservation Project and Grain for Green projects, reduced tourists because of dam construction and earthquake, encouraged horse riding practice during the development of ICDP have contributed to the increasing dependence on livestock sector. Livestock ban with payment for ecosystem services or feedlot operation could be possible solutions for this issue.
Chapter four explores the innovative technique to identify giant panda individuals to facilitate better conservation. Two methods have been used previously to identify individuals and population for giant pandas, fecal bamboo bite size combined with home range analysis and microsatellite analysis of fecal DNA. However, the first one suffers from the lack of accuracy and the latter one is limited by the freshness of the fecal sample and high cost. I developed the footprint identification technique in JMP based on two multivariate methods: discriminant analysis and the canonical centroid plot method using the anatomy measurements of footprints. I used 30 captive pandas to develop the algorithm and 11 individuals for validation. The overall accuracy of FIT for individual identification is 90% and sex discrimination is 85%. This technique is embedded in FIT as an add-in and free for conservation practitioners now.
In summary, this dissertation includes the following four papers.
Chapter 1, Li and Pimm. 2016. China's endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology 30:329-339.
Chapter 2, Li et al., 2016. Remotely sensed data informs Red List evaluations and conservation priorities in Southeast Asia. PloS one, 11(8), e0160566.
Chapter 3, Li et al., Emerging threat from livestock on giant panda conservation
Chapter 4, Li et al., Identifying individual and sex of giant pandas through Footprint Identification Technique.
With supporting information from the following publication during my Ph.D.:
Li, B. et al. 2014. Effects of feral cats on the evolution of anti-predator behaviours in island reptiles: insights from an ancient introduction. Proc. R. Soc. B 281: 20140339.
Ocampo-Peñuela, N., Jenkins, C. N, Vijay, V., Li, B.V., & Pimm., S.L. 2016. Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List. Science Advances, 2(11), e1601367.
Pimm, S.L., Harris, G., Jenkins, C.N., Ocampo-Peñuela, N. & Li, B.V. 2016 Unfulfilled promise of data-driven approaches: response to Peterson et al. Conservation Biology, In press.
Item Restricted Delimiting species without nuclear monophyly in Madagascar's mouse lemurs.(PLoS One, 2010-03-31) Weisrock, David W; Rasoloarison, Rodin M; Fiorentino, Isabella; Ralison, José M; Goodman, Steven M; Kappeler, Peter M; Yoder, Anne DBACKGROUND: Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage. The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation. However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters--including morphological differences, reproductive isolation, and gene tree monophyly--that are typically used as evidence for separately evolving lineages. METHODOLOGY: In this study, we assembled multiple lines of evidence from the analysis of mtDNA and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lemur lineages across the island of Madagascar. Our study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed. CONCLUSIONS: The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. We find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear population structure. Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and geographically widespread taxa, as well as newly resolved patterns of micro-endemism revealed through expanded field sampling into previously poorly and well-sampled regions.Item Open Access Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach.(Biol Rev Camb Philos Soc, 2015-02) Lamers, Leon PM; Vile, Melanie A; Grootjans, Ab P; Acreman, Mike C; van Diggelen, Rudy; Evans, Martin G; Richardson, Curtis J; Rochefort, Line; Kooijman, Annemieke M; Roelofs, Jan GM; Smolders, Alfons JPFens represent a large array of ecosystem services, including the highest biodiversity found among wetlands, hydrological services, water purification and carbon sequestration. Land-use change and drainage has severely damaged or annihilated these services in many parts of North America and Europe; restoration plans are urgently needed at the landscape level. We review the major constraints on the restoration of rich fens and fen water bodies in agricultural areas in Europe and disturbed landscapes in North America: (i) habitat quality problems: drought, eutrophication, acidification, and toxicity, and (ii) recolonization problems: species pools, ecosystem fragmentation and connectivity, genetic variability, and invasive species; and here provide possible solutions. We discuss both positive and negative consequences of restoration measures, and their causes. The restoration of wetland ecosystem functioning and services has, for a long time, been based on a trial-and-error approach. By presenting research and practice on the restoration of rich fen ecosystems within agricultural areas, we demonstrate the importance of biogeochemical and ecological knowledge at different spatial scales for the management and restoration of biodiversity, water quality, carbon sequestration and other ecosystem services, especially in a changing climate. We define target processes that enable scientists, nature managers, water managers and policy makers to choose between different measures and to predict restoration prospects for different types of deteriorated fens and their starting conditions.Item Open Access Ectomycorrhizal Fungi Facilitate Competitive Interactions Between Tree Taxa: Host Preference, Seedling Recruitment, and Forest Succession(2014) Williams, Gwendolyn ClareThe mycorrhizal mutualism is one of the earliest and most influential of all terrestrial symbioses. As the primary method used by most plants to acquire nutrients from the soil, mycorrhizal fungi help to shape the structure and composition of many ecosystems. Ectomycorrhizal (EM) fungi play an especially significant role because most EM fungi prefer a limited number of host taxa, and EM plant species likewise associate with only a fraction of the available EM fungi. This host preference issue, combined with the high diversity of EM fungi in forest ecosystems, complicates interspecies competition both among fungi and among plants, because these plant and fungal communities interact.
Despite recent attempts at documenting mycorrhizal fungi in the context of ecological succession, many questions remain about the underlying causal relationships among EM fungi, soil conditions, and plant community assembly. The succession of mycorrhizal fungi often mirrors the succession of plants, and ectomycorrhizal (EM) community composition may affect the outcome of competition among trees during succession. In a pine-oak seral system, we tested the ability of Pinus taeda and Quercus alba seedlings to associate with EM fungi when planted under both conspecific and heterospecific adults. We found that EM communities under pine and oak canopy were distinct regardless of seedling identity, indicating that the fungal associations of adult trees determine which EM species are available in the soil. In addition, pine seedlings planted under oak canopy showed decreased mycorrhization and growth compared to those planted under pine canopy, while oak seedlings showed no negative effects of heterospecific planting. This impaired ability of pine seedlings to associate with the EM community established under oaks may deter pine recruitment and facilitate the late-seral replacement of pines with oaks.
While EM fungal communities correlate with the dominant species of host tree, soil properties do as well, making it difficult to establish causality among these three variables. Soil was collected from oak- and pine-dominated stands and dried to kill off mature mycelium, leaving only the spore bank as a source of inoculum for pine and oak seedlings. EM root tips were collected for molecular identification of fungal species based on ITS barcoding, and soil samples from field and laboratory conditions were analyzed for fungal diversity using 454 sequencing. We found a reduced influence of canopy type and a more pronounced influence of seedling identity when compared to the EM communities on seedlings planted in the field, suggesting that adult trees do alter the availability of fungi by directly promoting the growth of their preferred EM associates.
The availability of EM fungi can also affect seedlings at the interface between EM- an AM-dominated forest. We tested the hypothesis that seedlings of Dicymbe corymbosa which recruit outside of monodominant stands have limited access to EM symbionts compared with those which recruit inside D. corymbosa stands. EM root tips and rhizosphere soil were collected from seedlings along two transects inside monodominant stands and three transects in the transition zone into mixed forest dominated by AM associates. Seedlings inside monodominant stands yielded both a greater quantity of mycorrhized root tips and a higher diversity of EM species than transition zone seedlings. Of the fungal families commonly found on adult roots, the Boletaceae were notably underrepresented on all seedlings. In the transition zones, high-throughput sequencing of soil also detected a decrease in EM diversity with distance from the parent tree.
Seedlings of D. corymbosa may benefit from recruiting within monodominant stands by tapping into common mycorrhizal networks (CMNs) to acquire low-cost nitrogen and, potentially, photosynthates produced by conspecific adults. Leaves of stand adults, stand seedlings, and mixed-forest seedlings were collected for stable isotope analysis to track the transfer of nitrogen and carbon through CMNs. The δ13C and δ15N results contradicted each other, suggesting that more complicated interactions may be playing out among adults, seedlings, and fungi.
Item Open Access Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.(PloS one, 2011-01) Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart LBackground
Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species.Methodology/principal findings
We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds.Conclusions
Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.