Browsing by Subject "Biopolymers"
- Results Per Page
- Sort Options
Item Open Access Bioorthogonal Functionalization of Elastin-like Polypeptides(2019) Costa, SimoneRecombinant technology has given us the powerful ability to imagine and create novel biological entities, from potent therapeutics to functionally active materials. By harnessing nature’s building blocks and reconfiguring these components, recombinant engineering unlocks the potential to tailor drug specificity and pharmacokinetics, rationally design biomaterials, understand and define protein structure, and probe cellular function with molecular precision. These technological feats are made possible with a few simple biological ingredients: nucleotides, sugars, and amino acids. These components, exquisitely crafted by evolution, are individually combined in useful ratios and precise sequences in living systems to synthesize DNA, RNA, polysaccharides, and proteins. These macromolecules collectively support organismal structure and function and give rise to the incredible diversity in Charles Darwin’s “great tree” of life. However, the seemingly infinite potential for new materials built from these components is, in fact, limited. The chemical identity of these building blocks – with a particular focus herein on the twenty naturally-occurring amino acids – limits the scope and functionality of the recombinant materials we can produce. In order to functionalize these products, to fundamentally change their chemical identity while preserving their biological functionality, we require the finesse of bioorthogonal chemistries and modification techniques.
Bioorthogonal reactions modify biological materials within living systems without perturbing function, much as two orthogonal lines can extend in different directions and intersect only at a single point. That point of intersection can be precisely defined through recombinant technology and gives us access to new classes of biomaterials. The term “bioorthogonal”, coined by Carolyn Bertozzi, importantly defines these unique chemistries, which inertly co-exist with biology until the exact moment when the desired reactions are initiated, to enhance – and even transform – biological systems.
Bioorthogonal modification of proteins will, by definition, require expansion of the biochemical toolbox; there are a variety of techniques used to achieve this goal. In these studies, we explore the use of genetic code expansion for incorporation of unnatural amino acids. This technology permits co-translational incorporation of amino acids with unique and non-canonical R-groups directly into the polypeptide backbone of a protein or biopolymer. These residues introduce unique chemical reactivity for further functionalization with desired moieties or chemical transformation.
We have used this technology to develop novel therapeutic and material platforms comprised of a unique biopolymer, elastin-like polypeptide (ELP). This thermally responsive biopolymer is easily recombinantly synthesized, though more biochemically complex ELPs require successful bioorthogonal modification. We designed the unnatural amino acid-containing ELPs necessary to enable our strategies for developing three distinct biomaterial platforms: 1) photoreactive ELPs which can generate stable hydrogel particles spanning four orders of magnitude in size; 2) a universal strategy for drug-loaded, targeted ELP nanoparticles by incorporation of a unique site for drug attachment; 3) a sustained-release therapeutic for treatment of brain tumors combining proteins of distinct cellular origin.
We have combined existing tools, technologies, and materials to generate these novel platforms with utility in biomaterials, drug delivery, and cancer therapeutics. The optimizations performed in developing each of these systems will inform future studies with similar goals; similarly, the reactions and strategies employed will contribute to furthering our understanding of the full potential of these important bioorthogonal chemistries.
Item Open Access Brachytherapy via a depot of biopolymer-bound 131I synergizes with nanoparticle paclitaxel in therapy-resistant pancreatic tumours.(Nature biomedical engineering, 2022-10) Schaal, Jeffrey L; Bhattacharyya, Jayanta; Brownstein, Jeremy; Strickland, Kyle C; Kelly, Garrett; Saha, Soumen; Milligan, Joshua; Banskota, Samagya; Li, Xinghai; Liu, Wenge; Kirsch, David G; Zalutsky, Michael R; Chilkoti, AshutoshLocally advanced pancreatic tumours are highly resistant to conventional radiochemotherapy. Here we show that such resistance can be surmounted by an injectable depot of thermally responsive elastin-like polypeptide (ELP) conjugated with iodine-131 radionuclides (131I-ELP) when combined with systemically delivered nanoparticle albumin-bound paclitaxel. This combination therapy induced complete tumour regressions in diverse subcutaneous and orthotopic mouse models of locoregional pancreatic tumours. 131I-ELP brachytherapy was effective independently of the paclitaxel formulation and dose, but external beam radiotherapy (EBRT) only achieved tumour-growth inhibition when co-administered with nanoparticle paclitaxel. Histological analyses revealed that 131I-ELP brachytherapy led to changes in the expression of intercellular collagen and junctional proteins within the tumour microenvironment. These changes, which differed from those of EBRT-treated tumours, correlated with the improved delivery and accumulation of paclitaxel nanoparticles within the tumour. Our findings support the further translational development of 131I-ELP depots for the synergistic treatment of localized pancreatic cancer.Item Open Access Drivers and Challenges for the Expansion of Renewable Resource Feedstocks: The Sustainable Apparel Sector(2017-04-27) Hoster, Amanda; Arakali, Shuvya; Denley, MauritaCompanies are increasingly exploring renewable resource feedstocks (RRFs) as inputs into consumer goods; to shift away from non-renewable resources and support sustainability efforts. A significant gap exists in understanding the opportunities and barriers in RFF expansion, specifically in the apparel sector. In this study, a global survey was administered to textile professionals to explore value chain perceptions of RRFs and outline the RRF landscape. The greatest drivers in RRF utilization were demand from brands and retailers, industry trends, and sourcing availability. Cost of inputs was rated as the greatest barrier to RRF utilization, followed by availability of inputs, performance, and associated technology requirements. Information gaps in RRF environmental impact and RRF procurement were also identified as barriers. While RRF was the terminology used for this study, the results indicated a lack of homogeneity in the term RRF and with what materials are considered “sustainable.”Item Open Access Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging.(ACS nano, 2019-10) Hu, Shiqi; Li, Zhenhua; Cores, Jhon; Huang, Ke; Su, Teng; Dinh, Phuong-Uyen; Cheng, KeHuman dermal fibroblasts (HDFs), the main cell population of the dermis, gradually lose their ability to produce collagen and renew intercellular matrix with aging. One clinical application for the autologous trans-dermis injection of HDFs that has been approved by the Food and Drug Administration aims to refine facial contours and slow down skin aging. However, the autologous HDFs used vary in quality according to the state of patients and due to many passages they undergo during expansion. In this study, factors and exosomes derived from three-dimensional spheroids (3D HDF-XOs) and the monolayer culture of HDFs (2D HDF-XOs) were collected and compared. 3D HDF-XOs expressed a significantly higher level of tissue inhibitor of metalloproteinases-1 (TIMP-1) and differentially expressed miRNA cargos compared with 2D HDF-XOs. Next, the efficacy of 3D HDF-XOs in inducing collagen synthesis and antiaging was demonstrated in vitro and in a nude mouse photoaging model. A needle-free injector was used to administer exosome treatments. 3D HDF-XOs caused increased procollagen type I expression and a significant decrease in MMP-1 expression, mainly through the downregulation of tumor necrosis factor-alpha (TNF-α) and the upregulation of transforming growth factor beta (TGF-β). In addition, the 3D-HDF-XOs group showed a higher level of dermal collagen deposition than bone marrow mesenchymal stem cell-derived exosomes. These results indicate that exosomes from 3D cultured HDF spheroids have anti-skin-aging properties and the potential to prevent and treat cutaneous aging.Item Open Access The Barriers Facing the Adoption of Compostable Biopolymers in the Canadian Food and Beverage Industry(2020-11-22) Ferreira, EugenioThe food and beverage industry in Canada, generates large volumes of single-use plastic waste as a result of its packaging materials. Utilizing compostable bioplastics in food and beverage packaging can provide an improved environmental performance alternative to conventional fossil-based plastics. Recycling efforts across Canada have historically placed effort on conventional plastics recycling to capture and manage the ubiquitous single-use plastics. However, through industry research and policy review, this report shows that the conventional recycling approach fails to effectively manage this stream. The report supports the adoption of compostable bioplastics as a practical alternative, but understands that its success requires more coordinated and adopted standardized terminology, government regulations and policy incentives to provide the impetus for food and beverage manufacturers to shift towards the adoption of compostable bioplastics as a practical solution to addressing the environmental performance issues associated with fossil-based, single-use plastics.