Browsing by Subject "Blood pressure"
Results Per Page
Sort Options
Item Open Access Aerobic Exercise, Diet, and Neurocognition among Individuals with High Blood Pressure(2009) Smith, Patrick JoseyIn addition to the adverse effects of high blood pressure (HBP) on cardiovascular disease, HBP is also associated with increased risk of stroke, dementia, and neurocognitive dysfunction. Although aerobic exercise and dietary modifications have been shown to reduce blood pressure, no studies have examined the effects of a combined aerobic exercise and dietary intervention on neurocognition among individuals with HBP, a group at elevated risk for neurocognitive dysfunction. As part of a larger investigation, the ENCORE study, this study examined the effects of dietary modification alone and combined with aerobic exercise on neurocognitive function among individuals with HBP. One hundred twenty five individuals with high normal blood pressure were randomized to an aerobic exercise and dietary modification group (DASH + WM), dietary modification alone (DASH-A), or a usual care control group. Participants completed a battery of neurocognitive tests assessing executive function and vigilance at baseline and again following the four month intervention. Following the intervention, participants in the DASH + WM and DASH-A groups exhibited modest improvements in neurocognitive function relative to controls, and these changes appeared to be mediated by improved cardiovascular fitness and weight loss. A combined aerobic exercise and dietary intervention improves neurocognitive function among individuals with HBP.
Item Open Access Association of mercury exposure with blood pressure among adults near artisanal and small-scale gold mining in Madre de Dios, Peru.(2019-04-26) Manidis, Tatiana DorotheaThere have been few studies investigating the association between mercury exposure and blood pressure, with inconsistent results. In this study, the association between hair mercury concentration with mean arterial pressure (MAP) and hypertension were evaluated using data collected in a 2015 cohort study, which sampled 23 communities in Madre de Dios, Peru. This area has recently experienced a rapid increase in artisanal and small-scale mining, which is the main anthropogenic source of mercury emissions. Generalized estimating equations were used to account for correlation within communities. Analyses for MAP and hypertension were performed using linear and logistic models, respectively, and confounding variables were included in both models. Due to the significant (p-value < 0.05) interaction between sex and mercury in both models, the analysis was stratified by sex. In women, there was an inverse association between hair mercury concentration with hypertension (OR: 0.84; 95% CI: 0.50–1.41) and MAP (gMR: 0.99; 95% CI: 0.98–1.008), but these associations were not significant at a 5% significance level. In men, the associations between hair mercury concentration with hypertension (OR: 3.07; 95% CI: 1.36–6.92) and MAP (gMR: 1.024; 95% CI: 1.01–1.04) were positive and significant at a 5% significance level. Differences observed between sex could be attributable to differences in exposure, men eating greater amounts of mercury-contaminated fish, or sex hormones, which regulate the distribution and excretion of mercury in the body.Item Open Access Hypertension Analysis from the National Income Dynamics Survey-South Africa Field Work in Zimbabwe Investigating the usefulness of Home Blood Pressure Monitors to Control Hypertension(2010) Mavunga, Ernest ShunguThis study was conducted using data that was collected as part of the National Income Dynamic Study(NIDS). We hypothesized that in the NIDS study conducted in South Africa this phenomenon would be observed as a rise in the first blood pressure and a drop to normal on the second reading. We then set out to investigate whether this phenomenon would be more pronounced among those with limited access to medical services such as those in the rural areas, those from low-income homes, the population with little or no education and lastly the black or colored population. Our analysis revealed that the white coat effect did indeed exist significantly among black races and the colored race but was not dependent on sex, education level, or income level. Based on the inaccuracies that come from the white coat effect and the resulting preference for home or ambulatory blood pressure readings we then set out to investigate whether those with home blood pressure monitors would have better blood pressure control than those individuals without home blood pressure monitors. This investigation was carried out in Zimbabwe for 10 weeks and will go on for a year. From the 10week results, it would seem those individuals with home blood pressure monitors achieved better blood pressure control than individuals without home blood pressure monitors. It seems this was a function of a higher number of clinic visits that were made by those with home blood pressure monitors compared to individuals who did not have home blood pressure monitors.
Item Open Access Impact of Kidney Function on Effects of the Dietary Approaches to Stop Hypertension (Dash) Diet.(J Hypertens (Los Angel)) Tyson, Crystal C; Kuchibhatla, Maragatha; Patel, Uptal D; Pun, Patrick H; Chang, Alex; Nwankwo, Chinazo; Joseph, Michael A; Svetkey, Laura POBJECTIVES: Although the Dietary Approaches to Stop Hypertension (DASH) diet lowers blood pressure in adults with hypertension, how kidney function impacts this effect is not known. We evaluated whether Estimated Glomerular Filtration Rate (eGFR) modifies the effect of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function. METHODS: Secondary analysis of the DASH-Sodium trial, a multicenter, randomized, controlled human feeding study that evaluated the blood pressure lowering effect of the DASH diet at three levels of sodium intake. Data from 92 participants with pre-hypertension or stage 1 hypertension during the 3450 mg /day sodium diet assignment contributed to this analysis. Stored frozen plasma and urine specimens were used to measure kidney related laboratory outcomes. RESULTS: Effects of the DASH diet on blood pressure, phosphorus, intact parathyroid hormone, creatinine, and albuminuria were not modified by baseline eGFR (mean 84.5 ± 18.0 ml/min/1.73 m(2), range 44.1 to 138.6 ml/min/1.73 m(2)) or the presence of chronic kidney disease (N=13%). CONCLUSIONS: The impact of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function does not appear to be modified by eGFR in this small subset of DASH-Sodium trial participants with relatively preserved kidney function. Whether greater reduction in eGFR modifies the effects of DASH on kidney related measures is yet to be determined. A larger study in individuals with more advanced kidney disease is needed to establish the efficacy and safety of the DASH diet in this patient population.Item Open Access Sex-specific Computational Models of Blood Pressure Regulation(2020) Leete, JessicaHypertension is a global health challenge: it affects one billion people worldwide and is estimated to account for >60% of all cases or types of cardiovascular disease. Due to our partial understanding of sex differences in blood pressure regulation mechanisms, fewer hypertensive women achieve blood pressure control compared to men, even though compliance and treatment rates are generally higher in women. Furthermore, concurrent use of typical antihypertensive treatments such as a diuretic, a renin-angiotensin system (RAS) inhibitor, and a non-steroidal anti-inflammatory drug (NSAID) significantly increases the risk of acute kidney injury (AKI). This phenomenon is known as “triple whammy” AKI. Diuretics and RAS inhibitors are often prescribed in tandem for the treatment of hypertension, whereas some NSAIDs, such as ibuprofen, are available over the counter. As such, concurrent treatment with all three drugs is common.
Thus, the objective of this study is to identify which factors contribute to the sexual dimorphism in response to anti-hypertensive therapies targeting the RAS. We also aim to better understand the mechanisms underlying the development of triple whammy AKI and to identify physiological factors that may increase an individual’s susceptibility.
To accomplish these goals, we develop sex-specifc models of blood pressure regulation in humans. Model components include variables describing the heart and circulation, kidney function, sodium and water reabsorption in the nephron, and the RAS. Sex differences in the RAS, baseline aldosterone level, and the reactivity of renal sympathetic nervous activity (RSNA) are represented.
Model results suggest that the main source of sexual dimorphism in treatment efficacy is how the effects of the bound RAS receptors differ between males and females -- specifically the feedback mechanisms of the angiotensin II type 1 receptor on renin secretion and the effects of the angiotensin II type two receptor on renal resistance. In regards to triple whammy AKI, model simulations suggest that individual variations in water intake or the myogenic response as well as high dosages of these drugs may predispose patients with hypertension to develop triple whammy AKI.
These proposed models hold great potential for extensions to study other components of blood pressure regulation, such as the interconnectedness of K+ regulation and Na+ regulation. We present a model of K+ regulation including the aldosterone and renal function feedback controls, as well as the feedforward control stimulated by dietary K+ intake. Model results suggest that the feedforward effect is necessary for increased urinary K+ excretion during digestion and that muscle-kidney cross talk can accelerate recovery following perturbations in extracellular K+ concentration.
Item Open Access The Effects of Ozone Exposure on Cardiovascular Pathophysiology(2017) Day, Drew BenjaminIt has been commonly accepted until recently that particulate matter (PM) is responsible for the cardiovascular toxicity of air pollution mixtures, while ozone (O3) mainly adversely affects respiratory health. However, there is increasing evidence that O3, independent of PM, is also associated with cardiovascular hospitalizations and mortality, even at levels below current regulatory standards. The mechanisms underlying these epidemiological associations between O3 and cardiovascular disease remain poorly understood. The goal of this dissertation research is to use human biomarker outcomes in real-world exposure scenarios to elucidate plausible mechanisms by which O3 affects cardiovascular health.
The findings of this dissertation research are primarily based on a single longitudinal cohort study designed to assess biomarker associations with time-activity-adjusted air pollutant exposures and with indoor air purification interventions, specifically different combinations of a high efficiency particulate air (HEPA) filter and a particle-removing and O3-producing electrostatic precipitator (ESP). Eighty-nine healthy participants living on a work campus in Changsha City, China were recruited for this study conducted from December 1st, 2014 - January 31st, 2015. The unique quasi-experimental setting of participants all living and working together on a work campus allowed for better characterization of air pollutant exposure effects due to minimal variation in potential confounders. At baseline, workers had a combination of an ESP and a HEPA in the central air handling units (AHUs) of their work and living spaces. During a five-week intervention period from December 6th, 2014 to January 13th, 2015, subjects were split into two groups, both of which had the ESPs turned off and one of which also had the HEPAs removed, and after this intervention original conditions were restored. Biomarkers indicative of inflammation and oxidative stress, arterial stiffness, myocardial function, blood pressure, thrombotic factors, and spirometry were measured at four sessions, one at baseline, two at two and four weeks into the intervention period, and one two weeks after restoring baseline conditions post-intervention. Indoor and outdoor O3 and PM of less than or equal to 2.5 µm in diameter (PM2.5), along with ambient co-pollutants NO2 and SO2, were monitored throughout the study period and combined with time-activity information and filtration conditions of each residence and office. These data were used to estimate 24-hour and 2-week combined indoor and outdoor average exposure concentrations, in addition to exposures in filtered and unfiltered environments.
To test the hypothesis that air pollutant exposures observed during this study would be associated with biomarker outcomes, associations between each exposure measure and biomarker were analyzed with single- and two-pollutant linear mixed models. The 24-hour mean O3 exposure concentrations during the study ranged from 1.4 to 19.4 ppb, corresponding with daily 8-hour maximum outdoor concentrations ranging from 3.6 to 60.5 ppb, with all but six days during the study period falling below the WHO 8-hour mean O3 guideline of 50 ppb6. Within this range, in models controlling for a second co-pollutant and other potential confounders, a 10 ppb increase in 24-hour O3 was associated with mean percent increases (95% CIs) of 36.3% (29.9%, 43.0%) in the platelet activation marker soluble P-selectin (sCD62P), 2.8% (0.6%, 5.1%) in diastolic blood pressure (DBP), and 18.1% (4.5%, 33.5%) and 31.0% (0.2%, 71.1%) in the pulmonary inflammation markers fractional exhaled nitric oxide (FeNO) and exhaled breath condensate nitrite and nitrate (EBCNN), respectively, as well as a -9.5% (-17.7%, -1.4%) decrease in arterial stiffness marker augmentation index (AI) and a -15.5% (-23.8%, -6.2%) decrease in the systemic oxidative stress marker urinary malondialdehyde (UMDA). A 10 ppb increase in 2-week O3 was associated with increases of 61.1% (37.8%, 88.2%) in sCD62P and 126.2% (12.1%, 356.2%) in EBCNN. In contrast, PM2.5, NO2, and SO2 exposure measures were variably and weakly associated with markers indicating increased arterial stiffness and endothelial cell dysfunction. Only the O3 associations with sCD62P are robust in two-pollutant models and multiple testing p-value correction. These results suggest that O3 exposure enhances cardiovascular disease risk through platelet activation and blood pressure increases at levels lower than those capable of affecting lung function.
To examine if the removal of HEPA filtration and ESP in the indoor air purification systems were associated with changes in biomarker outcomes, Bayesian hierarchical generalized ridge regression (GRR) models accounting for subject-specific intercept random effects were used to assess associations between categorical intervention variables while controlling for cumulative pollutant exposures in unfiltered microenvironments, namely outdoors and places other than the offices and dorms. The GRR models allowed for more stable maximized likelihood estimates when model predictors were highly correlated. When factoring in time-activity patterns, subjects without HEPA filtration had total 24-hour PM2.5 exposures on average 37.9 µg/m3 (88.3%) higher than subjects with HEPA filtration, and the removal of the ESPs resulted in a small average reduction of 2.2 ppb (a 32.8% decrease as compared to the overall mean 24-hour O3 exposure) in each subject’s total 24-hour O3 exposure. Despite this large change in PM2.5 exposure, no biomarkers were associated with HEPA removal in any models, but ESP removal was associated with decreases of -17.1% (-23.1%, -11.3%) in sCD62P, -3.6% (-5.5%, -1.4%) in systolic blood pressure (SBP), and -3.3% (-5.9%, -0.7%) in DBP. In addition, though subjects spent an average of 64.5% of their time in filtered locations during each two-week period between sampling visits, cumulative air pollutant exposure in unfiltered environments was associated with increased sCD62P for O3, increased FeNO for PM2.5, and increased EBC MDA and decreased subendocardial viability ratio (SEVR, a marker of myocardial oxygen supply and demand) for SO2. This study suggests that ESP use may result in O3-associated adverse health effects, biomarkers traditionally associated with PM exposure may not show a response weeks into an intervention, and time spent in environments filtered by particulate air filters, though perhaps not ESPs, should be maximized to avoid the health effects of cumulative high exposures in unfiltered locations.
These O3 associations with platelet activation and blood pressure are consistent with related results in some studies but not others, and so I hypothesized that age and sex may influence each individual’s response to O3 and account for some of this variability. I tested this hypothesis by assessing pollutant exposure by age or by sex interaction term estimates in association with biomarker outcomes in the GRR models. This statistical analysis was applied not only to the main study conducted in Changsha, but also to a subsequent study conducted in Shanghai with similar exposure and biomarker measurements that had younger study participants with more balanced sex ratio. In addition, the exposure and biomarker data between these two studies were pooled for an additional analysis checking the results from the individual study findings. In the main Changsha Study, significant age by pollutant exposure interaction terms were observed for the associations between 24-hour and 2-week O3 and sCD62P, 2-week O3 and SBP, and 2-week SO2 and PWV. In addition, the association between PWV and 2-week SO2 was significantly higher in men, and the association between PWV and 24h O3 was significantly higher in women, though the latter interaction term became nonsignificant in a sensitivity analysis assessing the independent interaction effect. No interaction terms were significant in the Shanghai Study analysis. In the pooled analysis, the 24-hour O3 exposure by age interaction term was significant for both sCD62P and SBP. Also, the pooled analysis showed that women had a significantly higher association between 24-hour O3 exposure and PWV as had been seen in the Changsha Study, but as in that case this association was not robust to the sensitivity analyses. These results indicate that older individuals are more susceptible to O3-associated effects on platelet activation and blood pressure, which is supported by literature examining age-associated changes in platelets and vascular tone.
Taken together these results and the findings in previous research examining cardiovascular pathophysiologic mechanisms, a coherent, plausible mechanistic pathway emerges. In this pathway, O3-associated reaction products in the airway lead to the propagation of signals that activate platelets, which in turn enhance blood pressure and induce a procoagulant state. The findings of this dissertation contribute to the mechanistic understanding of how O3 exposure affects cardiovascular health outcomes.