Browsing by Subject "Blotting, Southern"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Chromosomal organization of adrenergic receptor genes.(Proc Natl Acad Sci U S A, 1990-02) Yang-Feng, TL; Xue, FY; Zhong, WW; Cotecchia, S; Frielle, T; Caron, MG; Lefkowitz, RJ; Francke, UThe adrenergic receptors (ARs) (subtypes alpha 1, alpha 2, beta 1, and beta 2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. We have previously assigned the genes for beta 2- and alpha 2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, we have now mapped the alpha 1-AR gene to chromosome 5q32----q34, the same position as beta 2-AR, and the beta 1-AR gene to chromosome 10q24----q26, the region where alpha 2-AR is located. In mouse, both alpha 2- and beta 1-AR genes were assigned to chromosome 19, and the alpha 1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the alpha 1- and beta 2-AR genes in humans are within 300 kilobases (kb) and the distance between the alpha 2- and beta 1-AR genes is less than 225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediating the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families of receptor molecules.Item Open Access Classification and genetic characterization of pattern-forming Bacilli.(Mol Microbiol, 1998-02) Rudner, R; Martsinkevich, O; Leung, W; Jarvis, EDOne of the more natural but less commonly studied forms of colonial bacterial growth is pattern formation. This type of growth is characterized by bacterial populations behaving in an organized manner to generate readily identifiable geometric and predictable morphologies on solid and semi-solid surfaces. In our first attempt to study the molecular basis of pattern formation in Bacillus subtilis, we stumbled upon an enigma: some strains used to describe pattern formation in B. subtilis did not have the phenotypic or genotypic characteristics of B. subtilis. In this report, we show that these strains are actually not B. subtilis, but belong to a different class of Bacilli, group I. We show further that commonly used laboratory strains of B. subtilis can co-exist as mixed cultures with group I Bacilli, and that the latter go unnoticed when grown on frequently used laboratory substrates. However, when B. subtilis is grown under more stringent semiarid conditions, members of group I emerge in the form of complex patterns. When B. subtilis is grown under less stringent and more motile conditions, B. subtilis forms its own pattern, and members of group I remain unnoticed. These findings have led us to revise some of the mechanistic and evolutionary hypotheses that have been proposed to explain pattern growth in Bacilli.Item Open Access Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule.(PLoS Pathog, 2010-02-19) O'Meara, Teresa R; Norton, Diana; Price, Michael S; Hay, Christie; Clements, Meredith F; Nichols, Connie B; Alspaugh, J AndrewCryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101 multiply sign in circle mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101 multiply sign in circle strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101 multiply sign in circle mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.