Browsing by Subject "Body Size"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access A Quantitative Analysis of Growth and Size Regulation in Manduca sexta: The Physiological Basis of Variation in Size and Age at Metamorphosis.(PLoS One, 2015) Grunert, Laura W; Clarke, Jameson W; Ahuja, Chaarushi; Eswaran, Harish; Nijhout, H FrederikBody size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar's Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.Item Open Access Dietary quality and encephalization in platyrrhine primates.(Proc Biol Sci, 2012-02-22) Allen, Kari L; Kay, Richard FThe high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.Item Open Access Feather development genes and associated regulatory innovation predate the origin of Dinosauria.(Molecular biology and evolution, 2015-01) Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott VThe evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight.Item Open Access Folic acid supplementation before and during pregnancy in the Newborn Epigenetics STudy (NEST).(BMC public health, 2011-01-21) Hoyo, Cathrine; Murtha, Amy P; Schildkraut, Joellen M; Forman, Michele R; Calingaert, Brian; Demark-Wahnefried, Wendy; Kurtzberg, Joanne; Jirtle, Randy L; Murphy, Susan KBackground
Folic acid (FA) added to foods during fortification is 70-85% bioavailable compared to 50% of folate occurring naturally in foods. Thus, if FA supplements also are taken during pregnancy, both mother and fetus can be exposed to FA exceeding the Institute of Medicine's recommended tolerable upper limit (TUL) of 1,000 micrograms per day (μg/d) for adult pregnant women. The primary objective is to estimate the proportion of women taking folic acid (FA) doses exceeding the TUL before and during pregnancy, and to identify correlates of high FA use.Methods
During 2005-2008, pre-pregnancy and pregnancy-related data on dietary supplementation were obtained by interviewing 539 pregnant women enrolled at two obstetrics-care facilities in Durham County, North Carolina.Results
Before pregnancy, 51% of women reported FA supplementation and 66% reported this supplementation during pregnancy. Before pregnancy, 11.9% (95% CI = 9.2%-14.6%) of women reported supplementation with FA doses above the TUL of 1,000 μg/day, and a similar proportion reported this intake prenatally. Before pregnancy, Caucasian women were more likely to take FA doses above the TUL (OR = 2.99; 95% = 1.28-7.00), compared to African American women, while women with chronic conditions were less likely to take FA doses above the TUL (OR = 0.48; 95%CI = 0.21-0.97). Compared to African American women, Caucasian women were also more likely to report FA intake in doses exceeding the TUL during pregnancy (OR = 5.09; 95%CI = 2.07-12.49).Conclusions
Fifty-one percent of women reported some FA intake before and 66% during pregnancy, respectively, and more than one in ten women took FA supplements in doses that exceeded the TUL. Caucasian women were more likely to report high FA intake. A study is ongoing to identify possible genetic and non-genotoxic effects of these high doses.Item Open Access Investigation of sliced body volume (SBV) as respiratory surrogate.(Journal of applied clinical medical physics, 2013-01-07) Cai, Jing; Chang, Zheng; O'Daniel, Jennifer; Yoo, Sua; Ge, Hong; Kelsey, Christopher; Yin, Fang-FangThe purpose of this study was to evaluate the sliced body volume (SBV) as a respiratory surrogate by comparing with the real-time position management (RPM) in phantom and patient cases. Using the SBV surrogate, breathing signals were extracted from unsorted 4D CT images of a motion phantom and 31 cancer patients (17 lung cancers, 14 abdominal cancers) and were compared to those clinically acquired using the RPM system. Correlation coefficient (R), phase difference (D), and absolute phase difference (D(A)) between the SBV-derived breathing signal and the RPM signal were calculated. 4D CT reconstructed based on the SBV surrogate (4D CT(SBV)) were compared to those clinically generated based on RPM (4D CT(RPM)). Image quality of the 4D CT were scored (S(SBV) and S(RPM), respectively) from 1 to 5 (1 is the best) by experienced evaluators. The comparisons were performed for all patients, and for the lung cancer patients and the abdominal cancer patients separately. RPM box position (P), breathing period (T), amplitude (A), period variability (V(T)), amplitude variability (V(A)), and space-dependent phase shift (F) were determined and correlated to S(SBV). The phantom study showed excellent match between the SBV-derived breathing signal and the RPM signal (R = 0.99, D= -3.0%, D(A) = 4.5%). In the patient study, the mean (± standard deviation (SD)) R, D, D(A), T, V(T), A, V(A), and F were 0.92 (± 0.05), -3.3% (± 7.5%), 11.4% (± 4.6%), 3.6 (± 0.8) s, 0.19 (± 0.10), 6.6 (± 2.8) mm, 0.20 (± 0.08), and 0.40 (± 0.18) s, respectively. Significant differences in R and D(A) (p = 0.04 and 0.001, respectively) were found between the lung cancer patients and the abdominal cancer patients. 4D CT(RPM) slightly outperformed 4D CT(SBV): the mean (± SD) S(RPM) and S(SBV) were 2.6 (± 0.6) and 2.9 (± 0.8), respectively, for all patients, 2.5 (± 0.6) and 3.1 (± 0.8), respectively, for the lung cancer patients, and 2.6 (± 0.7) and 2.8 (± 0.9), respectively, for the abdominal cancer patients. The difference between S(RPM) and S(SBV) was insignificant for the abdominal patients (p = 0.59). F correlated moderately with S(SBV) (r = 0.72). The correlation between SBV-derived breathing signal and RPM signal varied between patients and was significantly better in the abdomen than in the thorax. Space-dependent phase shift is a limiting factor of the accuracy of the SBV surrogate.Item Open Access Mainland size variation informs predictive models of exceptional insular body size change in rodents.(Proc Biol Sci, 2015-07-07) Durst, PAP; Roth, VLThe tendency for island populations of mammalian taxa to diverge in body size from their mainland counterparts consistently in particular directions is both impressive for its regularity and, especially among rodents, troublesome for its exceptions. However, previous studies have largely ignored mainland body size variation, treating size differences of any magnitude as equally noteworthy. Here, we use distributions of mainland population body sizes to identify island populations as 'extremely' big or small, and we compare traits of extreme populations and their islands with those of island populations more typical in body size. We find that although insular rodents vary in the directions of body size change, 'extreme' populations tend towards gigantism. With classification tree methods, we develop a predictive model, which points to resource limitations as major drivers in the few cases of insular dwarfism. Highly successful in classifying our dataset, our model also successfully predicts change in untested cases.Item Open Access Predicting euarchontan body mass: A comparison of tarsal and dental variables.(American journal of physical anthropology, 2015-07) Yapuncich, Gabriel S; Gladman, Justin T; Boyer, Doug MMultiple meaningful ecological characterizations of a species revolve around body mass. Because body mass cannot be directly measured in extinct taxa, reliable body mass predictors are needed. Many published body mass prediction equations rely on dental dimensions, but certain skeletal dimensions may have a more direct and consistent relationship with body mass. We seek to evaluate the reliability of prediction equations for inferring euarchontan body mass based on measurements of the articular facet areas of the astragalus and calcaneus.Surface areas of five astragalar facets (n = 217 specimens) and two calcaneal facets (n = 163) were measured. Separate ordinary least squares and multiple regression equations are presented for different levels of taxonomic inclusivity, and the reliability of each equation is evaluated with the coefficient of determination, standard error of the estimate, mean prediction error, and the prediction sum of squares statistic. We compare prediction errors to published prediction equations that utilize dental and/or tarsal measures. Finally, we examine the effects of taxonomically specific regressions and apply our equations to a diverse set of non-primates.Our results reveal that predictions based on facet areas are more reliable than most linear dental or tarsal predictors. Multivariate approaches are often better than univariate methods, but require more information (making them less useful for fragmentary fossils). While some taxonomically specific regressions improve predictive ability, this is not true for all primate groups.Among individual facets, the ectal and fibular facets of the astragalus and the calcaneal cuboid facet are the best body mass predictors. Since these facets have primarily concave curvature and scale with positive allometry relative to body mass, it appears that candidate skeletal proxies for body mass can be identified based on their curvature and scaling coefficients.Item Open Access Small-bodied humans from Palau, Micronesia.(PLoS One, 2008-03-12) Berger, Lee R; Churchill, Steven E; De Klerk, Bonita; Quinn, Rhonda LUNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.Item Unknown Testing parallel laser image scaling for remotely measuring body dimensions on mantled howling monkeys (Alouatta palliata).(Am J Primatol, 2015-08) Barrickman, Nancy L; Schreier, Amy L; Glander, Kenneth EBody size is a fundamental variable for many studies in primate biology. However, obtaining body dimensions of wild primates through live capture is difficult and costly, so developing an alternative inexpensive and non-invasive method is crucial. Parallel laser image scaling for remotely measuring body size has been used with some success in marine and terrestrial animals, but only one arboreal primate. We further tested the efficacy of this method on the arboreal mantled howling monkey (Alouatta palliata) in La Pacifica, Costa Rica. We calculated interobserver error, as well as the method's repeatability when measuring the same animal on different occasions. We also compared measurements obtained physically through live capture with measurements obtained remotely using parallel laser image scaling. Our results show that the different types of error for the remote technique are minimal and comparable with the error rates observed in physical methods, with the exception of some dimensions that vary depending on the animals' posture. We conclude that parallel laser image scaling can be used to remotely obtain body dimensions if careful consideration is given to factors such as species-specific morphology and postural habits.