Browsing by Subject "Bone Density"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice.(PLoS One, 2012) Christensen, Susan E; Coles, Jeffrey M; Zelenski, Nicole A; Furman, Bridgette D; Leddy, Holly A; Zauscher, Stefan; Bonaldo, Paolo; Guilak, FarshidMutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.Item Open Access Palmitoyl acyltransferase, Zdhhc13, facilitates bone mass acquisition by regulating postnatal epiphyseal development and endochondral ossification: a mouse model.(PLoS One, 2014) Song, I-Wen; Li, Wei-Ru; Chen, Li-Ying; Shen, Li-Fen; Liu, Kai-Ming; Yen, Jeffrey JY; Chen, Yi-Ju; Chen, Yu-Ju; Kraus, Virginia Byers; Wu, Jer-Yuarn; Lee, MT Michael; Chen, Yuan-TsongZDHHC13 is a member of DHHC-containing palmitoyl acyltransferases (PATs) family of enzymes. It functions by post-translationally adding 16-carbon palmitate to proteins through a thioester linkage. We have previously shown that mice carrying a recessive Zdhhc13 nonsense mutation causing a Zdhcc13 deficiency develop alopecia, amyloidosis and osteoporosis. Our goal was to investigate the pathogenic mechanism of osteoporosis in the context of this mutation in mice. Body size, skeletal structure and trabecular bone were similar in Zdhhc13 WT and mutant mice at birth. Growth retardation and delayed secondary ossification center formation were first observed at day 10 and at 4 weeks of age, disorganization in growth plate structure and osteoporosis became evident in mutant mice. Serial microCT from 4-20 week-olds revealed that Zdhhc13 mutant mice had reduced bone mineral density. Through co-immunoprecipitation and acyl-biotin exchange, MT1-MMP was identified as a direct substrate of ZDHHC13. In cells, reduction of MT1-MMP palmitoylation affected its subcellular distribution and was associated with decreased VEGF and osteocalcin expression in chondrocytes and osteoblasts. In Zdhhc13 mutant mice epiphysis where MT1-MMP was under palmitoylated, VEGF in hypertrophic chondrocytes and osteocalcin at the cartilage-bone interface were reduced based on immunohistochemical analyses. Our results suggest that Zdhhc13 is a novel regulator of postnatal skeletal development and bone mass acquisition. To our knowledge, these are the first data to suggest that ZDHHC13-mediated MT1-MMP palmitoylation is a key modulator of bone homeostasis. These data may provide novel insights into the role of palmitoylation in the pathogenesis of human osteoporosis.Item Open Access The assessment of bone mineral content and density of the lumbar spine and proximal femur in US submariners.(Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 2014-09) Gasier, HG; Hughes, LM; Young, CR; Richardson, AMUnlabelled
The submarine environment is unique in that there is limited space and no sunlight, which may negatively affect skeletal health and lead to accelerated bone loss, osteoporosis, and fractures.Introduction
The primary purpose of this study was to determine whether there was an association with submarine service, specifically time spent at sea, and bone mineral content (BMC) and bone mineral density (BMD) of the lumbar spine and dual proximal femur (total hip and femoral neck) measured by DXA.Methods
This is a cross-sectional study of 462 submariners 20-91 years old. Variables included in the analysis were age, height, race, alcohol intake, tobacco use, fracture history, conditions, and medications known to cause bone loss and osteoporosis and submarine service.Results
Of the submarine service predictors, only serving onboard a diesel submarine was determined to be independently associated with a reduction in BMD of the total hip and femur neck, while no submarine service predictor increased the odds of having low BMD. In submariners 50+ years old, the age-adjusted prevalence of osteopenia was 15.7 % (lumbar spine) and 40.4 % (femur neck), while the prevalence of osteoporosis was 4.8 % (lumbar spine) and 4.2 % (femur neck), rates that did not differ from NHANES 2005-2008. In submariners <50 years old, 3.1 % was below the expected range for age. The proportion of submariners 50+ years old that met the FRAX criteria for pharmacological treatment was 12 %.Conclusions
Intermittent periods of submergence that can range from a few days to 3+ months do not appear to compromise skeletal health differently than the general population.