Browsing by Subject "Brain-Computer Interfaces"
- Results Per Page
- Sort Options
Item Open Access A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.(Scientific reports, 2016-09-08) Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel ALAlthough electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.Item Open Access Developing Chronically Reliable, High-Resolution, Flexible Neural Interfaces for Human and Animal Research(2021) Chiang, Chia-HanThe human brain has roughly 86 billion neurons. Deciphering how the brain functions remains difficult because of our limited tools to interface with this massive number of neurons. Many important insights have been discovered by researchers using electrodes that are capable of interfacing with only a few dozen neurons at a time. Clinical diagnoses and surgical treatment plans are currently made with only a few dozen electrode contacts on the brain surface. However, recent research with limited high-resolution sampling has revealed hidden rich neural dynamics that were missed by the low-resolution clinical electrodes. All current neural interface technologies are restricted to record from either a small population of neurons in a small area, or they record greatly averaged and coarsely sampled signals from a large area. To be able to record at high resolution from large areas of the brain requires more electrodes and more wires. Routing more wires out of the head is challenging, due to the space constraints inside the skull. One way to solve this challenge in scalability is to integrate powered electronics directly at each electrode site. However, this incorporating actively-powered electronics in a thin and flexible form factor that must survive for many years implanted in the brain presents a challenge that has never before been solved. To effectively capture micro-scale neural activity simultaneously across large brain regions presents three major technological challenges: accessibility, reliability, and scalability. This dissertation describes my efforts to solve these three challenges. Chapters 2 and 4, describe utilizing commercial flexible printed circuit (FPC) technology to achieve large scale manufacturing of high-resolution neural interfaces. Rather than using conventional polyimide for these neural interfaces, I investigated using liquid crystal polymer (LCP) as the substrate to improve the reliability of the devices. The LCP electrodes were tested in rats for over a year (Chapter 2). I also scaled up the designs and performed pilot intra-operative research studies in humans (Chapter 4). To increase the coverage of these LCP electrodes, I developed a silicone molding technique, which was tested in non-human primates (NHP) for over a year (Chapter 3). This work further demonstrated the utility of high-resolution electrodes in decoding studies. We were able to demonstrate improved decoding using optimal electrode selection. This result will enable future studies to improve decoding accuracy without significantly increasing power consumption by requiring all the channels to be wirelessly transmitted. Next, I solved the challenge of reliably integrating actively-powered electronics into a flexible neural interface, leading to a next-generation neural interface, the Neural Matrix. This technology demonstrated stable recording performance over a year of chronic implantation in rats (Chapter 5). The use of thermally-grown silicon dioxide (SiO2) and capacitive sensing provided key innovations to extend the reliability of the encapsulation for the active array. Finally, the incorporation of hermetic vertical interconnect access (VIA) structures made from highly doped silicon enabled direct faradic sensing and the possibility for electrical stimulation, without compromising device longevity (Chapter 6). These set of results from in vitro, acute, intra-operative, and chronic settings provide a robust demonstration of the novel neural interface technologies I have developed. The methodology and technology developed in this dissertation will enable broad improvements in clinical care and neuroscience research.
Item Open Access Neuroprosthetic Decoder Training as Imitation Learning.(PLoS Comput Biol, 2018-02-02) Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John PNeuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.