Browsing by Subject "Bronchoconstrictor Agents"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Beta-arrestin-2 regulates the development of allergic asthma.(J Clin Invest, 2003-08) Walker, Julia KL; Fong, Alan M; Lawson, Barbara L; Savov, Jordan D; Patel, Dhavalkumar D; Schwartz, David A; Lefkowitz, Robert JAsthma is a chronic inflammatory disorder of the airways that is coordinated by Th2 cells in both human asthmatics and animal models of allergic asthma. Migration of Th2 cells to the lung is key to their inflammatory function and is regulated in large part by chemokine receptors, members of the seven-membrane-spanning receptor family. It has been reported recently that T cells lacking beta-arrestin-2, a G protein-coupled receptor regulatory protein, demonstrate impaired migration in vitro. Here we show that allergen-sensitized mice having a targeted deletion of the beta-arrestin-2 gene do not accumulate T lymphocytes in their airways, nor do they demonstrate other physiological and inflammatory features characteristic of asthma. In contrast, the airway inflammatory response to LPS, an event not coordinated by Th2 cells, is fully functional in mice lacking beta-arrestin-2. beta-arrestin-2-deficient mice demonstrate OVA-specific IgE responses, but have defective macrophage-derived chemokine-mediated CD4+ T cell migration to the lung. This report provides the first evidence that beta-arrestin-2 is required for the manifestation of allergic asthma. Because beta-arrestin-2 regulates the development of allergic inflammation at a proximal step in the inflammatory cascade, novel therapies focused on this protein may prove useful in the treatment of asthma.Item Open Access Effect of the S-nitrosoglutathione reductase inhibitor N6022 on bronchial hyperreactivity in asthma.(Immunity, inflammation and disease, 2018-06) Que, Loretta G; Yang, Zhonghui; Lugogo, Njira L; Katial, Rohit K; Shoemaker, Steven A; Troha, Janice M; Rodman, David M; Tighe, Robert M; Kraft, MonicaRationale
Patients with asthma demonstrate depletion of the endogenous bronchodilator GSNO and upregulation of GSNOR.Objectives
An exploratory proof of concept clinical study of N6022 in mild asthma to determine the potential bronchoprotective effects of GSNOR inhibition. Mechanistic studies aimed to provide translational evidence of effect.Methods
Fourteen mild asthma patients were treated with intravenous N6022 (5 mg) or placebo and observed for 7 days, with repeated assessments of the provocative dose of methacholine causing a 20% fall in FEV1 (methacholine PC20 FEV1), followed by a washout period and crossover treatment and observation. In vitro studies in isolated eosinophils investigated the effect of GSNO and N6022 on apoptosis.Measurements and main results
This was a negative trial as it failed to reach its primary endpoint, which was change from baseline in methacholine PC20 FEV1 at 24 h. However, our exploratory analysis demonstrated significantly more two dose-doubling increases in PC20 FEV1 for N6022 compared with placebo (21% vs 6%, P < 0.05) over the 7-day observation period. Furthermore, a significant treatment effect was observed in the change in PC20 FEV1 from baseline averaged over the 7-day observation period (mean change: +0.82 mg/ml [N6022] from 1.34 mg/ml [baseline] vs -0.18 mg/ml [placebo] from 1.16 mg/ml [baseline], P = 0.023). N6022 was well tolerated in mild asthmatics. In vitro studies demonstrated enhanced eosinophilic apoptosis with N6022.Conclusions
In this early phase exploratory proof of concept trial in asthma, N6022 did not significantly alter methacholine PC20 FEV1 at 24 h, but did have a treatment effect at 7 days compared to baseline. Further investigation of the efficacy of S-nitrosoglutathione reductase inhibition in a patient population with eosinophilic asthma is warranted.