Browsing by Subject "CCAAT-Enhancer-Binding Proteins"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration.(Cell, 2009-09-04) Yan, Dong; Wu, Zilu; Chisholm, Andrew D; Jin, YishiGrowth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.Item Open Access Transcriptional regulation of N-acetylglutamate synthase.(PloS one, 2012-01) Heibel, Sandra Kirsch; Lopez, Giselle Yvette; Panglao, Maria; Sodha, Sonal; Mariño-Ramírez, Leonardo; Tuchman, Mendel; Caldovic, LjubicaThe urea cycle converts toxic ammonia to urea within the liver of mammals. At least 6 enzymes are required for ureagenesis, which correlates with dietary protein intake. The transcription of urea cycle genes is, at least in part, regulated by glucocorticoid and glucagon hormone signaling pathways. N-acetylglutamate synthase (NAGS) produces a unique cofactor, N-acetylglutamate (NAG), that is essential for the catalytic function of the first and rate-limiting enzyme of ureagenesis, carbamyl phosphate synthetase 1 (CPS1). However, despite the important role of NAGS in ammonia removal, little is known about the mechanisms of its regulation. We identified two regions of high conservation upstream of the translation start of the NAGS gene. Reporter assays confirmed that these regions represent promoter and enhancer and that the enhancer is tissue specific. Within the promoter, we identified multiple transcription start sites that differed between liver and small intestine. Several transcription factor binding motifs were conserved within the promoter and enhancer regions while a TATA-box motif was absent. DNA-protein pull-down assays and chromatin immunoprecipitation confirmed binding of Sp1 and CREB, but not C/EBP in the promoter and HNF-1 and NF-Y, but not SMAD3 or AP-2 in the enhancer. The functional importance of these motifs was demonstrated by decreased transcription of reporter constructs following mutagenesis of each motif. The presented data strongly suggest that Sp1, CREB, HNF-1, and NF-Y, that are known to be responsive to hormones and diet, regulate NAGS transcription. This provides molecular mechanism of regulation of ureagenesis in response to hormonal and dietary changes.