Browsing by Subject "CDK"
- Results Per Page
- Sort Options
Item Open Access Characterizing the Relationship Between Cell-Cycle Progression and a Transcriptional Oscillator(2013) Bristow, Sara LynnThe cell division cycle is the process in which the entirety of a cell's contents is duplicated completely and then equally segregated into two identical daughter cells. The order of the steps in the cell cycle must be followed with fidelity to guarantee two viable cells. Understanding the regulatory mechanisms that control cell-cycle events remains to be a fundamental question in cell biology. In this dissertation, I explore the mechanisms that coordinate and regulate cell-cycle progression in the budding yeast, Saccharomyces cerevisiae.
Cell-cycle events have been shown to be triggered by oscillations in the activity of cyclin dependent kinases (CDKs) when bound to cyclins. However, several studies have shown that some cell-cycle events, such as periodic transcription, can continue in the absence of CDK activity. How are periodic transcription and other cell-cycle events coupled to each other during a wild-type cell cycle? Currently, two models of cell-cycle regulation have been proposed. One model hypothesizes that oscillations in CDK activity controls the timing of cell-cycle events, including periodic transcription. The second model proposes that a transcription factor (TF) network oscillator controls the timing of cell-cycle events, via proper timing of gene expression, including cyclins. By measuring global gene expression dynamics in cells with persistent CDK activity, I show that periodic transcription continues. This result fits with the second model of cell-cycle regulation. Further, I show that during a wild-type cell cycle, checkpoints are responsible for arresting the bulk of periodic transcription. This finding adds a new layer of regulation to the second model, providing a mechanism that coordinates cell-cycle events with a TF network oscillator. Taken together, these data provide further insight into the regulation of the cell cycle.
Item Open Access Defining Roles for Cyclin Dependent Kinases and a Transcriptional Oscillator in the Organization of Cell-Cycle Events(2009) Simmons Kovacs, Laura AnneThe cell cycle is a series of ordered events that culminates in a single cell dividing into two daughter cells. These events must be properly coordinated to ensure the faithful passage of genetic material. How cell cycle events are carried out accurately remains a fundamental question in cell biology. In this dissertation, I investigate mechanisms orchestrating cell-cycle events in the yeast, Saccharomyces cerevisiae.
Cyclin dependent kinase (CDK) activity is thought to both form the fundamental cell-cycle oscillator and act as an effector of that oscillator, regulating cell-cycle events. By measuring transcript dynamics over time in cells lacking all CDK activity, I show that transcriptional oscillations are not dependent on CDK activity. This data indicates that CDKs do not form the underlying cell-cycle oscillator. I propose a model in which a transcription factor network rather than CDK activity forms the cell-cycle oscillator. In this model, CDKs are activated by the periodic transcription of cyclin genes and feedback on the network increasing the robustness of network oscillations in addition to regulating cell-cycle events.
I also investigate CDK-dependent and -independent mechanism regulating the duplication of the yeast centrosome, the spindle pole body (SPB). It is critical for the formation of a bipolar spindle in mitosis that the SPB duplicates once and only once per cell cycle. Through a combination of genetic and microscopic techniques I show that three distinct mechanisms regulate SPB duplication, ensuring its restriction to once per cell cycle.
Together, the data presented in this dissertation support a model in which CDKs, periodic transcription, and a TF-network oscillator are all important cell-cycle regulatory mechanisms that collaborate to regulate the intricate collection of events that constitute the cell cycle.